
COMPOSITION 

 

Algebraic Composition Defined under Geometric Condition (Brown) 

Let’s start with something more mundane: ‘what’s it about ‘coffee’ and about 

‘cup’ that allows one to ‘add’ coffee to cup?’ 

 Before we answer the above question, let’s go back to the notion of 

‘algebraic composition defined under geometric condition.’  To make this notion 

little bit more concrete, consider 2 geometric objects, say, 2 line segments f and 

g, depicted as below: 

 

 

There are many things about the above geometric objects that one could 

talk about, but there are two things about each of the two geometric objects f 

and g that are of particular relevance for our present purposes; they are the 

endpoints of each of the two line segments f and g.  Let’s denote the endpoints 

of f as ‘A’ and ‘B’, and the endpoints of g as ‘C’ and ‘D’ as shown below: 

 

 

 

Now let’s go back to where it all started i.e. composition.  How do we 

compose, or add, or put-together the two objects f and g, or more explicitly the 

two line segments f and g?  We can put f and g together by bringing them close 
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to one another such that the end-point B of f coincides with the end-point C of g.  

In other words, we can put-together f and g if and only if B = C.  The composite 

of f and g is a line-segment gf with A and D as end-points. 

 

Composition of  

 

is defined if and only if B = C, and the composite is 

 

 

 

The most important thing to note is that when we want to compose two 

things, the two things to be composed must have something in common to form 

the composite. 

 Now let’s go back to coffee and cup and try to answer how we get to add 

coffee to cup using the condition for composition: something common!  Since we 

all add coffee to cup all the time, there must be something in common between 

coffee and cup, which is volume.  But for the fact that both coffee and cup have 

the common property of volume, we wouldn’t be able to add coffee to cup. 

 

Functions, Rules, and Equality   

Now let’s go back (I hope all this going back is not too uncomfortable) to 

functions.  Consider 2 functions f: A � B and g: C � D.  Now let’s find out under 
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what conditions or what are the conditions that the above two functions ‘f’ and 

‘g’ have to satisfy in order for us to form the composite of the two functions. 

With the geometric conditions fresh in mind, we could take a guess at it, but 

before we do that, let’s get very clear about what a function is.  The notation for 

a function is  

   f: A � B 

The function  

   f: A � B 

has 3 things: 

1. a domain object ‘A’, a set 

2. a codomain object ‘B’, a set 

3. a rule 

Let’s dig little bit deeper into the ‘rule’ that’s part of the definition of function. 

 rule: 

  for each element ‘a’ of set ‘A’ 

  there is exactly one element ‘b’ of set ‘B’ 

  such that ‘b’ is the value of the function ‘f’ at ‘a’ 

    f(a) = b 

Any ‘f’ that satisfies the above property (labeled ‘rule’) is considered a function 

from a set ‘A’ to a set ‘B’. 



Before we get back to composition, there is one more thing that we need 

to get clear about function, which also happens to be about the ‘rule’.  Recall 

that a function has 3 things: 

  f: A � B 

1. a domain set A 

2. a codomain set B 

3. a rule (which assigns an element of the codomain to every element of 

the domain) 

From this definition of function, there is much we can say; to begin: 

Two functions ‘f’ and ‘g’ are different if: 

1. they have different domains; e.g. f: A � B, g: C � B 

2. they have different codomains; e.g. f: A � B, g: A � C 

3. they have different domains & codomains; e.g. f: A � B, g: C � D 

How about rules?  Are two functions different if they have different rules?  

For this we go back to the definition of ‘equality of functions’.  Two functions ‘f’ 

and ‘g’ are equal if they have the same domain, the same codomain, and if and 

only if they have the same value for each and every argument.  Given f: A � B 

and g: A � B, function f = g if and only if f(a) = g(a) for all ‘a’ in the domain A.  

With this definition of equality at the front of our minds, let’s try to answer the 

question: ‘are two functions different if they have different rules?’ 

Let’s consider two rules, wait, before we do that let’s consider two functions with 

same domain and same codomain so that the only thing different is the rule 



corresponding to the function, so that we can clearly see the relation between 

‘rule’ and ‘function’ in terms of ‘same’ and ‘different’. 

Consider two functions f: N � N and g: N � N, where N is the set of 

numbers; N = {1, 2 …}.  Now let’s consider two different rules, one for ‘f’ and 

another for ‘g’.  For ‘f’, let the rule be ‘take the input ‘n’ and add 1 i.e. (n + 1), 

and keep it aside for now, take the input and subtract 1 i.e. (n – 1); now multiply 

them both i.e. (n + 1)(n – 1); in terms of equations: 

 f(n) = (n + 1)(n – 1) 

For ‘g’, let the rule be ‘take the input n, square it i.e. (n2), and subtract 1 i.e.  

(n2 - 1); in the format of equations: 

 g(n) = (n2 - 1) 

Now if we look at the two rules for ‘f’ and ‘g’, they are different: 

simplistically speaking, one (f) requires the operations of addition, subtraction, 

and multiplication, while the other (g) requires just multiplication and 

subtraction.  Clearly we have two different rules for f: N � N and g: N � N, but 

going by the definition of equality of functions,  

 f = g if and only if  f(n) = g(n)  

From the above 

 f(n) = (n + 1)(n – 1) = (n2 – 1) = g(n) 

So, we find that even though the functions ‘f’ and ‘g’ have different rules, 

they satisfy the conditions for equality of functions.  Thus we note that functions 



with different rules (but not different domains, or different codomains, or both 

i.e. different domains and different codomains) can be equal. 

 

Composition and Associative Law 

Now with the ‘equality of functions’ in place, let’s return to ‘composition of 

functions.’  Consider two functions f: A � B and g: C � D.  Taking a cue from 

‘algebraic composition defined under geometric conditions’, we say the 

composite of two functions f: A � B and g: C � D is defined if and only if the 

codomain of the first function f is same as the domain of the second function g 

i.e. B = C.  Once this condition in terms of domain and codomain of functions is 

satisfied so as to make the functions composable, we are now in a position to 

find the composite of ‘f’ and ‘g’. 

 

 

 

 

 

 

 

 

The composite of f: A � B and g: B � D written as ‘gf’ (and read ‘g after 

f’) has as domain the domain of ‘f’ i.e. ‘A’, and as codomain the codomain of ‘g’ 
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i.e. ‘D’.  Now looking at the above diagram we notice that there are two 

pathways to go from ‘A’ to ‘D’: 1. first go from ‘A’ to ‘B’ and then from ‘B’ to ‘D’; 

and 2. go from ‘A’ to ‘D’ directly.  Looking back at the diagram, redrawn below 

 

 

 

 

 

 

 

 

Now, first we can find the value of ‘f’ at, say, ‘a’ of ‘A’; f(a) = b, and then 

evaluate the function ‘g’ at ‘b’ i.e. g(b) = d or expanding we have 

 g(b) = d 

 g(f(a)) = d 

since element ‘a’ of ‘A’ is a function from singleton set to ‘A’ 

 g(fa) = d 

Now let’s look at the second route gf: A � D.  Evaluating (gf) at ‘a’, we 

get (gf)a = d.  In order for the two paths to lead to the same destination, they 

have to evaluate to the same‘d’ of D for the same ‘a’ of A i.e. 

 g(fa) = d and (gf)a = d or  

g(fa) = (gf)a 
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i.e. the above expression or identity or law has to be satisfied. 

 g(fa) = (gf)a = gfa 

is nothing but the associative law.  So, we may say composition of two functions 

is a special case of associative law. 

 

Commutative Diagram 

No, we are not quite done with our diagram (external diagram; since we are not 

looking at the innards i.e. elements of objects A, B …): 

 

 

 

 

 

 

 

 

The above diagram, in which there are two paths from a point ‘A’ to 

another point ‘C’ and in which taking either one of the two paths is same i.e. 

taking ‘gf’ from A to B to C is same as (or equal to) taking the other path ‘h’ from 

A to C, is called commutative diagram.  Making it crisp, if, in the above diagram, 

h = gf, then the diagram is said to be commutative. 
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Identity Laws 

Given any function f: A � B we can readily construct two commutative diagrams 

along the following lines: First note that to each set A we can associate a 

function called identity function, which has the set A as both domain and 

codomain, and which assigns to each element ‘a’ of the domain A the same 

element ‘a’ of codomain A.  Thus given a function f: A � B, we can construct 

two functions 1A: A � A and 1B: B � B. 

 Given the three functions f: A � B, 1A: A � A, and 1B: B � B, how many 

composites can we form? 

 Recollect that in order for a composite of 2 functions to be defined the 

codomain of the first function must be same as the domain of the second 

function.  Looking back at the above 3 functions, we note that (i) the codomain 

of 1A is same as the domain of f, so we can form the composite f1A of 1A and f; 

and (ii) the codomain of f is same as the domain of 1B, so we can form the 

composite 1Bf of 1B and f.  In terms of external diagrams: 
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or more explicitly 

 

 

 

 

 

 

 

and 

 

 

 

 

 

 

 

Now let’s look at a simple illustration of the commutativity of the above two 

diagrams i.e. let’s see an example of the following two identities:  

(i) f1A = f  

(ii) 1Bf = f 
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Let’s look at the internal diagram of a simple function f: A � B 

 

 

 

 

 

 

 

 

f(a1) = b2 

f(a2) = b1 

To see that f1A = f 

The composite of 
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To see that 1Bf = f 
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Composing Squares 

Early on we began by noting ‘algebraic composition defined under geometric 

conditions’, which led to the condition that to compose 2 line segments, the 

target of the 1st line segment must be the same as the source of the 2nd line 

segment. Composition of 

 

 

is defined if and only if B = C, and the composite is given by 
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Now let’s see if we can stretch the geometric intuition into additional algebraic 

concepts.  Since we started with line-segments, which are 1-dimensional and 

found that the composition of 1-dimensional geometric line-segments or 

algebraic functions is not always defined; it is defined if and only if the 0-

dimensional source of the 2nd line-segment (function) is the (0-dimensional) 

target of the 1st line-segment (function).  So far so good or so well. 

 Now that we are at 1-dimensional line-land, we can go either 0-

dimensional point-land or 2-dimensional flat-land (c.f. Abbot), and ask the same 

question of composition or putting together. 

 First, let’s look at the case of 0-dimensional points.  Composition or 

putting-together of structure-less points or elements, unlike the case of 

functions, where composition is not always defined for a pair of arbitrary 

functions, is always defined, which is nothing but the collection of elements into 

a set.  In other words, in the case of 0-dimensional points or elements 

“composition” of elements into collections or sets is always defined. 

 Now, let’s go in the other direction: from 1-dimensional line-segments to 

2-dimensional squares.  Consider a square A 

 

 

 

 

and note that the square A has (i) horizontal edges, and (ii) vertical edges.   
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Now consider another square B 

 

 

 

 

 Now back to our good-old question of composition.  Given 2 squares A 

and B, how and under what conditions can we compose them and what are the 

composites?  Consider the two squares: 

 

 

 

 

 

The square A has as vertical edges f and g, and as horizontal edges x and y.  

The square B has as vertical edges h and j, and as horizontal edges u and w. 

 Taking a cue or extending the reasoning employed in defining composite 

in 1-dimensional line-segments case, we try to find the conditions under which 

composition of squares is defined.  Those of you who played Lego might have 

the answers.  In any case we find that in the case of 2-dimensional squares, 

given two squares we can form (i) a composite by stacking the squares vertically 

or (ii) a composite by stacking the squares horizontally.  Let’s now get specific or 

concrete.   
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Given 2 squares A and B 

 

 

 

 

 

 

the horizontal composite B h A is defined if and only if the vertical edges g and h 

coincide, and the composite is: 
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Similarly, given two squares 

 

 

 

 

 

 

 

 

 

the vertical composite of A and B, B v A is defined if and only if the horizontal 

edge y of A coincides with the horizontal edge u of B, and the composite B v A 

is: 
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Now let’s spice up squares a bit.  Consider 4 squares A, B, C, and D, and 

the two operations v and h (vertical and horizontal composition, respectively): 

 

 

 

 

 

 

 

 

 

 

The squares are labeled with capital letters as usual, and the edges are labeled 

with numbers (used simply as distinct symbols).  Looking at the 4 squares above 

we can think of forming the composite of 4 squares in 2 ways: (i) forming 2 

vertical composites first and then forming the horizontal composite of the 2 

vertical composites; and (ii) forming 2 horizontal composites first and then 

forming the vertical composite of the 2 horizontal composites.   
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Pictorially, we can, given 

 

 

 

 

 

 

 

 

 

(i) first form 2 vertical composites (here and later on we assume that the 

conditions for vertical and horizontal compositions i.e. coincidence of 

the appropriate edges is satisfied or given): 
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and then form the horizontal composite of the above 2 vertical 

composites: 

 

 

 

 

 

 

 

Redrawing the 4 squares again: 
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(ii) first form 2 horizontal composites (remember the conditions for 

compositions are assumed to be given or satisfied): 

 

 

 

 

 

 

 

 

and then form the vertical composite of the above 2 horizontal composites: 

 

 

 

 

 

 

 

 Now to the obvious question: Given that, given 4 squares, (i) we can first 

form vertical composites and then form their horizontal composite; or (ii) we can 

first form horizontal composites and then form their vertical composite, are the 

two composites equal?   In other words, does the following identity 

B h A 

D h C 

(D h C) v (B h A) 



(D v B) h (C v A) = (D h C) v (B h A) 

hold true?  Well, if it holds true, we say it—the interchange law—holds true; if 

not, we say the interchange law doesn’t hold true in the given case. 

 Finally all this geometry, i.e. squares, edges, horizontal, and vertical 

composition is but to get to the notion of a function which takes functions to 

functions.  Our familiar function takes elements (of a domain set) to elements (of 

a codomain set).  If we think of a function f: A � B as a process that transforms 

an object A into an object B, it’s not much of a leap of imagination to think of a 

process which transforms a process f: A � B into a process g: C � D as shown 

below: 

 

 

 

 

 

 

 

 

These have the usual identities, associative laws, compositions, etc., but that’s all 

for later. 
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Composing Commutative Diagrams 

Before we close, let’s go back to commutative diagrams.  Consider 2 

commutative diagrams CD1 and CD2: 

 

 

 

 

 

 

 

with h = gf and r = qp.  We can form the composite of the 2 commutative 

diagrams if h: A � C is equal to or coincides with r: A � C.  Let’s say it does i.e. 

h = r, so that we can form 
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and we note that there are 2 paths from A to C: 1. from A to B to C and 2. from 

A to D to C.  The first path is the composite ‘gf’ which is equal to ‘h’ which in turn 

is equal to ‘r’ which in a final turn is equal to ‘qp’.   Written crisply, 

 gf = h 

     = r 

     = qp 

Thus we find that a big diagram formed of smaller commutative diagrams is also 

commutative, or the composite of commutative diagrams is commutative.  In 

closing, if it seems as though the presentation is too pedantic, it’s simply to, in 

the words of Lawvere, “discern the germ of nontrivial in the trivial.” 

 

 

 

 

 

 

 


