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Abstract. Functionals were discovered and used by Volterra over a century
ago in his study of the motions of viscous elastic materials and electromag-
netic fields. The need to precisely account for the qualitative effects of the
cohesion and shape of the domains of these functionals was the major impe-
tus to the development of the branch of mathematics known as topology, and
today large numbers of mathematicians still devote their work to a detailed
technical analysis of functionals. Yet the concept needs to be understood by
all people who want to fully participate in 21st century society. Through some
explicit use of mathematical categories and their transformations, functionals
can be treated in a way which is non-technical and yet permits considerable
reliable development of thought. We show how a deformable body such as
a storm cloud can be viewed as a kind of space in its own right, as can
an interval of time such as an afternoon; the infinite-dimensional spaces of
configurations of the body and of its states of motion are constructed, and
the role of the infinitesimal law of its motion revealed. We take nilpotent
infinitesimals as given, and follow Euler in defining real numbers as ratios of
infinitesimals.
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1 Introduction

From the study of calculus and related mathematical sciences, one some-
times hears of a subject called functional analysis and perhaps even of the
fact that thousands of mathematicians are devoting their lives to its study.
Also in connection with attempts to describe the workings of computer pro-
grams one sometimes hears of functionals. Statistics too is largely about
functionals. What are functionals, and why do they need so much analyz-
ing? It would be desirable to have a basic grasp of such a fundamental
concept in order to be able to approach in imagination the problems and
solutions with which experts occupy themselves and which in fact impinge
constantly on our everyday lives in this technological age.

I do not intend to give technical details here concerning problems and
solutions, but I can indicate a general common feature. The experience of
300 or 400 years of modern science shows that in order to describe the motion
of electromagnetic waves, of fluids and gases, and of responsive bodies such
as airliners, and especially in order to be able to intervene in that motion
we must deal in a precise way with dependencies which relate figures and
quantities in spaces of an infinite number of dimensions. These dependencies
take the form of functionals. Conversely, almost any dependency which is
mathematically reasonable could possibly show up in nature for everyday
materials such as glass or wood or silicon, or in extreme environments such
as the cylinder of an auto engine, a lightning bolt or the heart of a mammal.

What I will describe in detail is a diagrammatic method for approaching
such situations as they are modeled within conceptual frameworks known as
cartesian closed categories of smooth spaces. Thus I need to explain what
is commonly meant by spaces in general, smoothness, categories, and
cartesian closedness; within such a framework, functionals have their
natural place as the dependencies whose analysis depends on extensive study
of particulars, guided however by the general features of the framework.

2 Spaces, cartesian Closed Categories and functionals

By spaces mathematicians have long meant not only ordinary three-dimen-
sional physical space S, but a whole panoply of related objects; each of these
can serve as the domain of variation for variable quantities, and simulta-
neously as an arena within which variation and motion can be imagined.



Everyday physics of extended bodies 11

For example, a one-dimensional space T is often considered as a model of
the time line, and even more basically, there is the very important space 1
consisting just of one point. In addition to these, there are important oper-
ations such as product, sum, and exponentiation (which I will describe)
for producing more complicated spaces out of given ones. It is due to the
condition, that the results of those operations are again spaces of the same
category, that a category of spaces is called “cartesian-closed”. Crucial to
all thinking about spaces is the conceptualization of maps between them.
For example, a map T → S can represent a particular path of a point parti-
cle in space through time, and more generally, a map T → X can represent
a particular process through time in space X of placements or states of an
extended body, as explained below. A map 1 → T signifies a particular
choice of a point in time, and a map 1 → S a particular choice of a point
in space S; in general, a map 1 → X is usually called simply a point of
X. The particular nature of 1 itself is determined by the fact that for any
general space X there is just one map X → 1.

The most basic operation on maps is composition, which to any pair of
maps f , g for which the target space of f is the same as the source space of
g, yields a new map gf whose source is that of f and whose target is that
of g. As a special example, composing a path with the choice of a point in
time gives as a result the point of space where the path is passing at that
time.

Since composition is associative, one has that composition satisfies the
familiar “function of a function” rule

(gf)t = g(ft)

for all points in the source space of f . However, this associativity equation
holds for any map t (which is not necessarily a point) and moreover for liber-
ating our thinking it is crucial to recognize that in typical useful categories,
a map f is not determined by the ensemble of its “values” ft for points t
of its source space; we may have to evaluate f at more general elements
of its source space in order to fully determine its particularity. To avoid
confusion, it is better not to use the expression “function of a function” for
composition, since that expression better describes the much more general
idea of functional, as was pointed out in 1887 by Volterra when he intro-
duced the concept (though not the word). Before we arrive at the definition
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of that concept, we need to make explicit a few more elementary properties
of a category of smooth spaces. Among the endo-maps of a space X (that
is, maps whose source and target are both the same X) there is in particular
the identity map 1X which satisfies the expected equations with respect to
both fore and aft composition. For some maps X → Y there exist maps
Y → X with composite 1Y ; any such map is called a “section” of the orig-
inal map and a good deal of mathematical striving consists of seeking and
classifying sections. However, if a section itself has a section then there is
only one and the original map is called an isomorphism; two spaces between
which there exists at least one isomorphism have all significant properties
in common and we may write X ∼= Y to signify that X and Y are “isomor-
phic” in this sense, although it is important in most contexts to consider
whether such isomorphisms are “natural” in a sense which category theory
was invented to make precise.

The important operation of “cartesian” product can be applied within
a category of smooth spaces: For any two spaces A and B there is a third
space A × B equipped with special maps to A and B respectively, called
projection maps, which satisfy the so-called universal property that for any
space Q and any pair of maps Q → A and Q → B there is exactly one
map Q → A × B whose composites with the projections express the given
pair. Thus (taking Q = 1) the points of a product A×B uniquely represent
the ordered pairs of points, and even more importantly, (taking Q = T )
a process in A × B represents an arbitrary parallel pair of processes, one
in A and the other in B. Sometimes attempts are made to define a map
to somehow consist of ordered pairs; that approach is not satisfactory in
general, since we must consider the idea of map as a primitive notion, but
the attempt is based on the fact that for any map A→ B there is as a special
case of the universal mapping property, another map A→ A×B called its
graph which is a section of the projection to A and whose composite with
the projection to B recovers the given map.

It is ordinarily assumed that there is an isomorphism of spaces

S ∼= T × T × T

wherein to each of the three projections we imagine a section which is a path
called a “coordinate axis”; such an isomorphism is not “natural”, because
there is no preferred choice of such a “coordinate system”.
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Although a map whose target is a product can be trivially analyzed into
maps whose targets are the factors, such is by no means true for maps whose
source is a product. Such maps A × B → C are called binary operations
and include (for example if A = B = C) the rich structures known as Lie
groups G × G → G. In general the output of a binary operation depends
with non-trivial particularity on the interaction of the components of an
input element.

The operation of sum when applied to two spaces yields another space
equipped with injection maps to it from those summands, satisfying the
universal property “opposite” to that of product projections. In particular,
for any map A→ B there is a cograph A+B → B for which the injection
is a section. When we try to internally picture the action of a particular
map, or define a map via a table of values, or to picture composition, it is
often the cograph which we actually use.

Translating the cograph description into the graph picture of a given map
is an important elementary exercise in becoming intimately acquainted with
the particularities of that map. Because our category of smooth spaces is a
very non-linear category, the distributive law relating sums and products is
actually true in the sense that the obvious map

A×X +A× Y → A× (X + Y )

is always an isomorphism. That fact will follow from the existence of the
key operation of exponentiation, or map space construction, to which we
now turn.

For any two spaces W and A, it is very important that there be a third
space WA, called a map space, with the universal property that for any
space X, any binary operation A × X → W has associated to it a well-
defined map X → WA, and this association is invertible. This association
is mediated by a special map A × WA → W , called an evaluation map,
similarly to the mediation of product structure by the projection maps.
By considering the case X = 1, we see that the points of WA uniquely
represent the maps A → W ; hence the name map space, but again more
general elements than points are needed to detect the “inner cohesion” that
any space, in particular a map space, has. Now, finally we can define the
notion of functional, generalizing in a natural way Volterra’s conception:
It signifies any map

WA → Y
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whose source space is equipped with a structure of a map space. Some-
times the word “operator” is used to signify a more structured situation in
which the target space is also a map space. Let us briefly survey some of
the many forms and contents of functionals: It can easily be shown that
WA+B ∼= WA × WB so that defining 2 = 1 + 1 we can consider that a
binary operation of the kind W 2 → W is a very special kind of functional;
usually the term is only used in case the exponent on the source is a more
extended space than 2. lf we are given a map A → B, there results from
the definition an induced operator WB → WA which is sometimes called
a restriction operator; the action of the latter on points corresponds just
to simple composition A → B → W , but since it operates also on more
general elements of WB this induced operator, like any functional, also pre-
serves the cohesion or smoothness inherent in every object of our category,
as will be made more precise below. The inducing process just described is
often denoted (for fixed W ) by ( )∗ and is referred to as the contravariant
functorality of the map space construction because it reverses composition.

Sections of restriction operators are often solution operators for “bound-
ary value problems”. Brouwer’s fixed point theorem shows that such solu-
tion operators are usually not trivially induced by any retraction of B onto
its boundary A. The solution operator s is always induced by a so-called
Green function or Poisson kernel ˆ̂s whose target is not A, but a “double
dual of A”.

If f is a boundary inclusion and if s is a solution operator for some PDE,
then twice applying the basic transformation, the Green or Poisson operator
is obtained as follows:

WA WB
s

f∗

B ×WA W
ŝ

B WWA
ˆ̂s

There is also covariant functorality for fixed exponent and variable base, as
is easily seen. A final consequence of general formal nature that we mention
is the canonical double dualization map or “Dirac delta” A→WWA

which
shows that any point of any space can be represented by a functional of a
very special sort. But apart from these formal transformations and their
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ramifications there is no general way of getting all functionals. Certainly the
ones of specific interest are not tautologically transformable into anything
simpler, and therefore must be analyzed in their particularity as they arise
in concrete situations.

3 Motion of bodies

For example, it is usual to model a body such as a cloud C as a space in
its own right, usually with additional structure. A map C → S is then
considered as a particular placement of the body in ordinary space and
the space of placements SC takes its place alongside the space ST of paths
as a fundamental example of an infinite dimensional space. A motion of
the cloud during a time period T can be considered as a particular map
T → SC , that is, a path in placement space. Because of the commutativity
of products T × C ∼= C × T , the motion can equally well be described as
a map C → ST , which could be called a “placement in path space”. Both
of these representations of the motion are necessary in order to compute
via composition the effects it has on some non-tautological functionals. For
example, on placement space there is the important functional “center of
mass” which is computed with the help of integration with respect to the
mass distribution over the body; composing it with the motion in the first
description gives the path in ordinary space which is traced by the center
of mass of the body.

On the other hand, on the space of paths in S is defined the important
operator of time differentiation ST → V T , where V is a vector space of
the same dimension as S; composing this with the motion in the second
representation yields the map whose transpose describes the time variation
of the velocity field on C itself. It should be clear that there are many similar
examples whose computation must be approached with these concepts in
mind to avoid confusion.

4 Smoothness and derivatives

I would now like to describe an additional particular feature which can be
realized in suitable categories and which will justify calling them “smooth”
by providing a concrete approach to the particular functionals of the kinds
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known as differentiation and integration.
This feature consists of a particular space I (for time instant) which has

only one point 1 → I (called zero). Although quite small (called by some
“amazingly tiny”) I is nonetheless not isomorphic to 1. A map I → X will
be considered as an infinitesimal process or path and the map space XI

will play the role of the tangent bundle of X, which is indeed some sort
of bundle over X since the point zero induces a restriction map XI → X.
The chain rule of differentiation is essentially the covariant functorality of
the map space construction applied to this case of the fixed exponent I.
The basic relation between the instant and the time line is an algebraic
operation I × T → T which we consider as “addition” or infinitesimal time
shift and which reduces to 1T at zero; on the other hand, at any given point
of time, the addition reduces to the inclusion I → T of the particular instant
centered at that point in time.

First let us consider some properties and results which we need to make
explicit concerning I itself. As for any endomap space AA, we have a monoid
structure (associative binary operation) induced by composition itself on the
endomap space of I. This multiplication restricts to the subspace

R→ II

of that endomap monoid defined by the equation expressing the idea of
preserving the center point zero of the instant. This monoid of “speed-ups of
the instant” is itself no longer infinitesimal and indeed is, I believe, a natural
model of the system R of real quantities. This is a precise modern expression
of Euler’s characterization of real quantities as ratios of infinitesimals.

The monoid R acts naturally on any tangent bundle as velocity retar-
dation or homotheties.

The precise measure of the fact that the instant is not a point is expressed
by the axiom

RI ∼= R2

which has been extensively studied in research papers and textbooks over
the past fifty years. There is actually an isomorphism (of the type expressed
by the axiom) for each choice of a unit of time; one of the implied projections
to R is the bundle projection induced by the zero of the instant, but the
other one expresses the idea that an infinitesimal path in R then (given the
choice of unit of time) has a uniquely defined speed or slope.
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In general, a map φ : I×X → X which reduces to 1X at zero is called a
vector field in X or first-order ordinary differential equation (ODE); usually
that concept is defined to mean a section of the bundle projection from the
tangent bundle of X, but since in our category the total tangent space is a
map space, the universal property shows that this simpler formulation as a
binary operation is equivalent: for each point of X, the vector field yields an
infinitesimal path in X centered at the point, and that is done in a smooth
manner.

Clearly a vector field is expressing a particular sort of “urge to move” in
X; precisely, we define a solution process for such a given ODE to be a map
x : T → X in the richer category of spaces equipped with vector fields, that
is the composites x(+) and φ(I×x) are required to be equal along a solution
x of φ. In this context the underlying space is often referred to as the state
space for the processes which solve the ODE, and the pair consisting of the
state space and the vector field may also be referred to as an infinitesimal
dynamical system.

5 Laws of motion

A dynamical system in the sense of engineering physics, however, is an object
significantly more structured than merely a vector field, because as Galileo
discovered, it is appropriate to consider that states are already states of
motion, and that the law of motion operates as a vector field of a particular
kind on those. In fact, one of the first examples of a functional involved
the hereditary dependence of the stress in certain materials upon a body’s
entire history of deformations. But here I will limit myself to the situation in
which states of motion are adequately represented as infinitesimal histories
of placements, in other words, X = P I , the space of infinitesimal paths in
the space P of placements such as P = SC , where C is a body such as a
cloud. Thus

X = P I = (SC)I ∼= (SI)C ∼= (S × V )C ∼= SC × V C ∼= P × V C ,

since a natural elaboration of the basic axiom shows that the tangent bundle
of ordinary space also “trivializes” to consist of pairs in which the second
components are translation vectors, and hence we can say that the states of
such a body C are pairs consisting of placements and velocity fields on it. A
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particular law of motion I ×X → X is then uniquely analyzed as an “urge
to move” responding to the current placement and the current velocity field
of the whole body (and satisfying a second equation, made possible by the
double occurrence of I, which says that the second component is a derivative
of the first). With help of the homothetical action of R on X = P I one can
distinguish laws of motion which depend only on the velocity (commonly
called frictional or viscous response) or which depend only on placement
(commonly called elastic response) and even analyze more general laws of
motion into combinations of such special laws with purely inertial ones. The
total law of motion is constitutive for the particular material that the body
C is made of and for the environment in which it finds itself.

If C does not degenerate to a finite discrete space of bare particles, the
dependence of the response on placement can involve infinitesimal aspects,
and indeed by requiring that this be the only dependence we can express the
idea that the immediate urge to move for a particular portion of the body is
a response to the placement and velocity field only of its immediate neigh-
borhood (PDE’s). An “inertial” law of motion which is fully homogeneous
is called an affine connection and the projections into P of its solutions are
called geodesics.

It is, for example, along laws of motion that variable quantities may
vary. Variable quantities themselves are of two basic types, on the one hand,
intensive quantities such as temperature, density, and pressure which on a
body C belong to a space such as RC and hence transform contravariantly
along maps C ′ → C and, on the other hand, extensive quantities, such as
volume, mass, energy and entropy, which act homogeneously on intensive
quantities as distribution functionals RC → R and so belong to the spaces

Hom(RC ,R)

which depend covariantly on C. Both the intensive and extensive spaces
of quantities are examples of the linear spaces that play a central role in
functional analysis.

To take account of the fact that heat causes motion and motion causes
heat, often the notion of state needs to be extended by augmenting the
purely mechanical placement space P with thermal variables.

To sum up, I hope that I have been able to briefly indicate how the
concept of functionals, interpreted in a smooth category with an infinites-
imal instant I, is a powerful instrument in distinguishing various types of
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motions and variations of extended bodies and of significant quantities de-
fined on them. I believe it is worthwhile to make the effort to learn the
simple language associated with this concept, for it can act as a rigorous
guide that does not have to be unlearned when approaching more precise
formulations of particular problems and when planning the necessary steps
in calculations that aim to solve these problems.
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