$$
p=\text { core }(p)+\text { boundary }(p)
$$

Let us consider a graph G as depicted below:

The graph G consists of two arrows a and b, with distinct source dots v and w, respectively, but with a common target dot z . Let us now consider a part p (demarcated by the green dashed closed contour consisting of the arrow a (with its source (v) and target (z) dots) and the dot w) of the graph G. Given a part p of an object (graph G), with negation operation non defined as the smallest part of the object (graph) G satisfying:

$$
p+\operatorname{non}(p)=G
$$

where ' + ' denotes union or the logical operation $O R$, we find that non (p) is the arrow b (with its source (w) and target (z) dots; depicted by the red round dot closed contour).

Next, we find that the intersection:

$$
\mathrm{p} \text { AND non }(\mathrm{p})=\{\mathrm{w}, \mathrm{z}\}
$$

is both the source (w) and target (z) dots of the arrow b, which is the boundary of the part p (depicted as blue dash dot closed contour).

Next, we find that the double negation

$$
\text { non }(\text { non }(\mathrm{p}))=\mathrm{a}
$$

is the arrow a (with its source (v) and target (z) dots), which is the core of the part p (depicted as purple square dot closed contour).

Finally, we find that the part

$$
p=\operatorname{core}(p)+\text { boundary }(p)
$$

where part p is the arrow a (with its source (v) and target (z) dots) and dot w , while core (p) is the arrow a (with its source (v) and target (z) dots), and boundary (p) is the two dots w and z .

