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Abstract

In an extensive category satisfying a mild chain condition, the arithmetic of multiplication
and addition (cartesian product and coproduct) of objects is shown to be very close to that
of natural numbers. Examples of such categories abound, e.g. in algebraic geometry. c© 2000
Elsevier Science B.V. All rights reserved.
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0. Dedication and introduction

As one might imagine, the opportunity to discuss mathematics with Bill Lawvere for
25 years has been a constant joy for which I cannot adequately express my gratitude.
Recently, these conversations have turned with increasing frequency to questions about
�nite sums and products, and I think that we have both been pleasantly surprised to
see how much follows from the most elementary considerations. Bill and I plan a short
book on this subject, of which this talk outlines one corner, the initial consequences
of a weak �niteness condition.

1. Arithmetic of objects and the extensive law

Objective number theory is the study of addition and multiplication (and eventu-
ally exponentiation) of objects in suitable categories. An abstract set does not come
equipped with preferred algebraic operations, but a category is often more obliging:
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cartesian products and coproducts are uniquely determined, if they exist. Also, in any
category with �nite coproducts and �nite products, most of the usual laws of arith-
metic are automatic: the commutative, associative, and identity laws for addition and
multiplication of isomorphism classes of objects are forced by the universal properties
characterizing sum and product; but the distributive law is not, since it involves a
relation between limits and colimits. A category with �nite products and coproducts
is said to be distributive if the canonical maps

n∑
i=1

(Ai × B)→
(

n∑
i=1

Ai

)
× B

are isomorphisms; here n ≥ 0, but the case n= 2 su�ces, as Robin Cockett observed.
(The analogous notion in algebra is rig, a set with two commutative monoid structures
0, + and 1, ×, satisfying

n∑
i=1

(ai × b) =
(

n∑
i=1

ai

)
× b;

but in algebra both n= 0 and n= 2 are needed.)
Often a category is distributive because one of the two operations, plus or times,

is so friendly that the other is perforce compatible with it. For multiplication: if the
functor ‘multiplication by a �xed object’ has a right adjoint (i.e. if function spaces exist
in the category) then this multiplication preserves whatever colimits exist, in particular
sums, so the category is distributive. For addition: if sums resemble disjoint unions,
the distributive law is again forced. More precisely, call a category E extensive if it
has �nite coproducts (sums) and for each pair A; B of objects the obvious functor

E=A× E=B→ E=(A+ B)

is an equivalence; if E has also �nite products, this extensive law implies the dis-
tributive law. The current consensus calls an extensive category with �nite products a
prextensive category, and an extensive category which is lex (has all �nite limits) a
lextensive category.
Our subject will be prextensive categories E, and our question is: “To what extent

does the number theory of E resemble the number theory of the category of �nite sets?”
We can interpret ‘number theory’ narrowly as the algebra of the set of isomorphism
classes equipped with 0, 1, +, and ×, so that the number theory of the category of
�nite sets is exactly the rig of natural numbers (but see Section 3 for an additional
family of algebraic operations.) Sometimes we take it more broadly, so that our question
becomes: “To what extent does the category E resemble the category S of �nite sets?”;
that is, we can take ‘number theory’ in the classical case to include much of �nite
combinatorics, as did our ancestors when they spoke of ‘square numbers’, ‘triangular
numbers’, etc.
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2. Examples of extensivity

Any topos is extensive, but extensivity is far more pervasive. If E is extensive or
lextensive, so is E=B for any object B of E and so is EC

op
for any small category C . If

E is extensive, any full subcategory closed under sums and summands is extensive. A
rule of thumb is that any ‘category of space’ is extensive, e.g. all the standard examples
of categories of analytic spaces, algebraic spaces, piecewise linear spaces, topological
spaces, or spaces with action of a group G. Two special examples motivated much of
our work: From algebraic geometry (k-Alg)op, the opposite of the category of �nitely
generated commutative k-algebras for a commutative Noetherian base ring k, and from
combinatorics the category Graph of �nite directed graphs, i.e. the presheaf category
SC

op
, where S is the category of �nite sets and C has only two objects A and D and

only two non-identity maps, ‘source’ and ‘target’, both from D to A. Typically, facts
were rather evident in the latter example, and to us less so in the former (sometimes
requiring the assistance of Don Schack and Shuen Yuan). The desire to unite these
extremes led eventually to simple hypotheses and the resulting almost trivial proofs.

3. Separable, connected

Two classes of objects play a role in analyzing a prextensive category. In any cate-
gory E with �nite coproducts, an object C is connected if the functor E(C;−) to sets
preserves these; for an extensive category this is equivalent to: C 6= 0 and if C=A+B
then A=0 or B=0. (In particular, this is the standard notion in topology and in alge-
braic geometry.) If E is extensive, it turns out that a complementary summand for a
subobject is unique (as subobject, not merely as object) if it exists. In particular, if the
diagonal map S → S×S has has a complement, we say that S is separable and denote
the complement by S↓2, called the ‘second falling power’ and thought of as the ‘object
of distinct pairs’. (More precisely, it is the object of disjoint pairs, i.e. represents the
functor assigning to each X the set of pairs of maps X → S with equalizer 0.) For
separable S, the higher falling powers S↓n are easily de�ned and exist automatically.
With some license one can write S↓n=S(S−1) : : : (S− (n−1)); to prove the formulas
(e.g. for (S1 + S2)↓n) suggested by this license is not di�cult. A typical example is

Sn =
∑

S↓(n=∼)

with the sum over all equivalence relations on n, splitting the object of n-tuples into
terms according to which components are equal. If S↓n = 0 for some natural number
n, we say that S is falling nilpotent.
A consequence of the extensive law is that for any map f with codomain a sum, the

pullbacks of f along the inclusions of the summands exist and f is the sum of these.
In particular, with C connected and S separable, any two maps C → S together yield
a map C → S2 = S + S↓2, giving a (necessarily trivial) decomposition of C, and we
get: the maps are either equal or disjoint, i.e. have equalizer 0. Likewise,

E(C; S↓n) = E(C; S)↓n;
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i.e. a map C → S↓n is a distinct n-tuple of maps C → S, so that for points with
connected domain, S↓n represents merely distinct n-tuples.

4. The retract chain condition and algebraic objects

We say that a category E has the retract chain condition (RCC) if for any in�nite
chain

X0
r1−−−→←−−−s1 X1

r2−−−→←−−−s2 X2
r3−−−→←−−−s3 X3

r4−−−→←−−−s4
with risi=1 for all i, it follows that some snrn=1. This condition is self dual, and easily
seen to be true for commutative Noetherian rings, hence for our basic example from
algebraic geometry (and even more trivially for any category with all homsets �nite,
e.g. Graph). If E is extensive with RCC, it follows that every object is (uniquely) a
�nite sum of connected objects, since if A were not, one could construct an in�nite
chain of retracts starting with A+ A. By the spectrum of an object X is meant the set
of cardinalities #E(C; X ) for connected C; if these cardinalities are bounded by some
natural number, we say that X has bounded spectrum.
For the rest of this section, E is prextensive with RCC.

Theorem. For X ∈ E ; the following are equivalent:
(1) X is algebraic; i.e. there exist p(T ) 6= q(T ) ∈ N[T ] with p(X ) ∼= q(X ).
(2) X has bounded spectrum.
(3) X is separable and falling nilpotent.
(4) Only �nitely many connected objects are summands of powers of X.

The proof actually makes things more explicit; e.g. if X has bounded spectrum, then
two polynomials agree at X if and only if they agree on the spectrum. Note that since
every object is uniquely a �nite sum of connected objects, the rig of isomorphism
classes is additively free, so it maps injectively to the associated ring; it is now liter-
ally correct to write X ↓2 = X (X − 1), etc., and to rewrite p(X ) = q(X ) as an equation
f(X ) = 0 where f(T ) ∈ Z[T ]. The implication (1) ⇒ (3) now says that if X satis-
�es any equation, then X is also ‘separable over N’, i.e. satis�es a monic equation
X (X − 1) · · · (X − k) = 0 with distinct natural number roots.
The analogy between algebraic objects and algebraic numbers extends quite far.

Given �nitely many algebraic objects in a prextensive E with RCC, the smallest full
subcategory containing these and closed under products, sums, and summands, is again
prextensive with RCC; but now every object is algebraic and there are only �nitely
many connected objects. Conversely, if E is prextensive with RCC and only �nitely
many connected objects, then all objects are algebraic, and we may think of E as
a partial analog of the ring of algebraic integers in a �nite extension of the �eld of
rational numbers.


