
A Map in the Category of Graphs 

 

Let’s look at the category of graphs, which has graphs such as O shown below as objects. 

 

 

 

 

 

 

 

 

 

Object O is a pair of sets: set A of arrows, set D of dots; and a parallel pair of functions: 

function t assigns to each arrow (in A) its source dot (tail; in D); function h assigns to 

each arrow (in A) its target dot (head; in D). 

 

A map f from an object O1 to an object O2 

f: O1 --> O2 

depicted as 

 

 

 

 

A 

D 

t h 

O 



 

 

 

 

 

 

 

 

 

 

is a pair of functions 

f = <fA, fD> 

depicted as 

 

 

 

 

 

 

or as a pair of commutative squares 
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satisfying 

 

t2fA = fDt1  

 

corresponding to the square on the left and 

 

h2fA = fDh1 

 

corresponding to the square on the right (in the above). 

 

Let’s consider a map 

f: O --> O 

from domain object O to codomain object O to illustrate the idea of map in the category 

of graphs in some more detail. 
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Let’s take a graph 

 

 

 

as our object O 

 

 

 

 

 

 

 

 

 

A = {z} and D = {c, e} are the pair of sets of arrows and dots, respectively of object O. 

 

t: A --> D, with t(z) = c 

and 

h: A --> D, with h(z) = e 

are the parallel pair of functions of tail (source) and head (target), respectively of the 

object O. 

 

Now, the map 

z 
c e 

A 

D 

t h 

c 
e 

z 

O 



f: O --> O 

 

 

 

 

 

 

 

 

 

 

which we recollect as 

f = <fA, fD> 

with 

fA: A --> A and fD: D --> D 

depicted as 
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and after separating heads from tails 

 

 

 

 

 

 

 

satisfies 

tfA = fDt and hfA = fDh 

 

Now, we have a question! 

 

What does ‘a map f: O --> O is a pair of functions f = <fA, fD> satisfying tfA = fDt and  

hfA = fDh’ mean? 

 

What do we have here?  We have 4 functions: 

t: A --> D 

h: A --> D 

fA: A --> A 

fD: D --> D 

of which we already know, clearly, what the functions tail t and head h are.  But first, 

let’s write the domain and codomain sets of the functions. 
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A = {z} 

D = {c, e} 

The function t: A --> D is given by t(z) = c, and the function h: A --> D is given by  

h(z) = e. 

 

How about the functions fA and fD? 

 

Let’s start with fA: A --> A. 

Since A = {z}, there is only one possibility for fA; the function fA assigns the only 

element z of the codomain set A to the one element z of the domain set A; fA(z) = z. 

 

Before we go on to fD: D --> D, let’s depict diagrammatically all that we stated above as 

 

 

 

 

 

 

 

 

 

Now in order for the f: O --> O to be a map, function fD: D --> D, D = {c, e} must satisfy 

tfA = fDt and hfA = fDh. 
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What is function fD?  fD is a function fD: D --> D from domain set D = {c, e} to codomain 

set D = {c, e}. 

 

Given that there are 2 elements in the domain set D and 2 elements in the codomain set 

D, we have a total of 4 (22) functions from D to D as shown below: 
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Now in order to find out how many maps there are from the object O to O, we have to see 

how many of the following 4 pairs of equations hold true. 

 

1. tfA = fD1t and hfA = fD1h 

2. tfA = fD2t and hfA = fD2h 

3. tfA = fD3t and hfA = fD3h 

4. tfA = fD4t and hfA = fD4h 

 

Restating what we just said, we say 

f1 = <fA, fD1>: O --> O 

is a map from domain object O to codomain object O if 

tfA = fD1t and hfA = fD1h 

or pictorially, if 

 

 

 

 

 

 

 

 

commute. 
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We say a diagram, for example, the square on the left commutes if tfA = fD1t. 

 

OK, fine, but first let’s list out all 3 functions in the equation tfA = fD1t to be satisfied: 

t(z) = c 

fA(z) = z 

fD1(c) = c and fD1(e) = c 

which is what is depicted in the diagram 

 

 

 

 

 

 

 

 

Let’s take off at the top-left z; we can take fA and go to z, and from z take t to land at c.  

Or, we can take t, from the very same top-left z, and go to c, and from c take fD1 to land at 

c.  Both itineraries take us from z at the top-left to the very same down-right c.  Speaking 

less verbally, we evaluate both the left-hand side and the left-hand side of the equation 

tfA = fD1t 

at z to see if the equation 

tfA = fD1t 

holds true. 
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Left-hand side 

tfA(z) = t(z) = c 

Right-hand side 

fD1t(z) = fD1(c) = c 

Therefore  

tfA = fD1t 

which is not surprising given that we already saw that the corresponding diagram 

commutes. 

 

Now let’s see if our diagram on the right (above) corresponding to heads 

 

 

 

 

 

 

 

 

commutes, for which we check if hfA = fD1h. 

 

Evaluating at z 

hfA(z) = h(z) = e 

fD1h(z) = fD1(e) = c 
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we find that 

hfA ≠ fD1h 

i.e. 

 

 

 

 

 

 

 

doesn’t commute. 

 

Let’s remind ourselves what we are doing now.  We started out saying 

f1 = <fA, fD1>: O --> O 

is a map if 

tfA = fD1t and hfA = fD1h. 

We found out that 

tfA = fD1t 

but 

hfA ≠ fD1h. 

So f1 = <fA, fD1> is not a map. 
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How about 

f2 = <fA, fD2> 

f3 = <fA, fD3> 

f4 = <fA, fD4> 

 

Let’s look at  

f2 = <fA, fD2> 

 

f2 is a map if 

 

 

 

 

 

 

 

 

commute. 

 

In terms of equations,  

if tf A = fD2t and hfA = fD2h, 

then f2 = <fA, fD2> is a map. 
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Let’s first look at the equation on the left 

tfA = fD2t 

and evaluate both sides of the equation at z. 

tfA(z) = t(z) = c 

fD2t(z) = fD2(c) = e 

Therefore, tfA ≠ fD2t. 

Since we need both equations 

tfA = fD2t and hfA = fD2h 

to hold true for f2 = <fA, fD2> to be a map, and since we found tfA ≠ fD2t, we won’t bother 

checking the other equation, and conclude f2 = <fA, fD2> is not a map. 

 

How about f3 = <fA, fD3>? 

Does the pair of diagrams 

 

 

 

 

 

 

 

 

commute? 
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We have to check if 

tfA = fD3t and hfA = fD3h 

which we can also do by following the arrows in the diagram in addition to substituting 

symbols in the equations. 

 

Evaluating both sides of the equation on the left at z 

tfA(z) = t(z) = c 

fD3t(z) = fD3(c) = c 

Therefore, the equation tfA = fD3t holds true i.e. the corresponding diagram on the left 

commutes. 

 

Next, evaluating hfA = fD3h at z, we find that 

hfA(z) = h(z) = e  

fD3h(z) = fD3(e) = e 

Therefore, the equation hfA = fD3h holds true i.e. the corresponding diagram on the right 

commutes. 

 

Since  

tfA = fD3t and hfA = fD3h 

we say 

f3 = <fA, fD3> 

is a map f3: O --> O from domain object O to codomain object O. 



 

How about f4 = <fA, fD4>? 

 

Does the pair of diagrams 

 

 

 

 

 

 

 

 

commute? 

 

Is tfA = fD4t and hfA = fD4h? 

Evaluating both sides of the equation on the left at z, we find that 

tfA(z) = t(z) = c 

fD4t(z) = fD4(c) = e 

Therefore, tfA ≠ fD4t.  Thus, f4 = <fA, fD4> is not a map. 

 

 

To sum up, of all the 4 possibilities 

f1 = <fA, fD1> 
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f2 = <fA, fD2> 

f3 = <fA, fD3> 

f4 = <fA, fD4> 

we found that only 

f3 = <fA, fD3> is a map f3: O --> O from the domain object O to the codomain object O. 

 

Well, what does all this mean?  Where’s the big-picture?  Here, it might help to note that 

fD1 mapped both head and tail to tail, fD2 mapped tail to head and head to tail, and fD4 

mapped both tail and head to head, while fD3 mapped head to head and tail to tail. 

 

So? 



Composition of Maps in the Category of Graphs

 

An object of the category of graphs is a parallel pair of functions

 

 

 

 

 

 

 

where X is called the set of arrows and P the set of dots of the graph.  If x is an arrow 

(element of X), then s(x) is called the source of x, and t(x) is called the target of x.

 

A map

 

 

 

 

 

 

in the category of graphs is defined to be any pair of functions fA: X --> Y, fD: P --> Q for 

which the diagram
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commutes satisfying fDs = s’fA and fDt = t’fA.

 

What is the composite map gf of the maps f and g depicted below
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The composite map gf of maps f and g is

 

 

 

 

 

 

 

Is the above composite map gf a map in the category of graphs?

 

First, let’s look at the maps f, g in the category of graphs of which gf is composite.

 

The map f, when spelled-out, is

 

 

 

 

 

 

 

satisfying fDs = s’fA and fDt = t’fA
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The map g, when spelled-out, is

 

 

 

 

 

 

 

satisfying gDs’ = s’’gA and gDt’ = t’’gA

 

The composite gf of maps g after f

 

 

 

 

 

 

 

 

which is equal to
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which must satisfy 

 

s’’gAfA = gDfDs and t’’gAfA = gDfDt 

 

for the composite gf to be a map in the category of graphs.

 

We know, going by the fact that f and g are maps in the category of graphs, that 

fDs = s’fA and fDt = t’fA

and

gDs’ = s’’gA and gDt’ = t’’gA

and that we have to check to see if s’’gAfA = gDfDs and t’’gAfA = gDfDt 

s’’gAfA = gDs’fA = gDfDs and t’’gAfA = gDt’fA = gDfDt

 

Therefore…; I’ll let you conclude, but given that we, often, look at one thing and 

see something (plz don’t press that panic button; I am saving my symbolic conscious 
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experience for sometime later), what do we see when we look at symbol substitution in, 

say,

 

s’’gAfA = gDs’fA = gDfDs

 

Given 
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Again, given

 

gDs’ = s’’gA

 

we look at

 

 

 

 

 

 

 

and, from our vantage point, see
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Now, from this perspective, when we look at

 

s’’gAfA = gDs’fA = gDfDs

 

we see
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If you say so.

 

Now, what do we see when we look at 

 

t’’gAfA = gDt’fA = gDfDt

 

OK, fine.  No more drops dripping on to forehead; for now let’s just friend—facebook—
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substitution and composition.

 

See you soon, alligator!



Identity Maps in the Category of Graphs

 

First, let’s look at the definition of CATEGORY.

 

A category consists of the data:

 

(1) Objects A, B, C, …

(2) Maps f, g, h, …

(3) For each map f, one object A as domain of f and one object B as codomain of f as 

in f: A --> B.

(4) For each object A, an identity map with object A as both domain and codomain of 

the identity map as in 1A: A --> A.

(5) For each composable pair of maps f: A --> B, g: B --> C with domain of g, B 

equal to codomain of f, B, a composite map gf with the domain of f, A as domain 

and the codomain of g, C as codomain as in gf: A --> C.

 

The above data of category satisfy the following rules:

(1) Identity laws: If f: A --> B, then 1Bf = f and f1A = f.

(2) Associative law: If f: A --> B, g: B --> C, and h: C --> D, then (hg)f = h(gf) = hgf.

 

Now that we have seen Category, let’s look at Category of Graphs.

 

An object O of the category of graphs is a parallel pair of functions called tail, head with 



a set called arrows as domain and a set called dots as codomain of the pair of functions as 

in t: A --> D, h: A --> D shown below:

 

 

 

 

 

 

 

 

 

A map f: O1 --> O2 from a domain object O1 (t1: A1 --> D1, h1: A1 -->D1) to a 

codomain object O2 (t2: A2 --> D2, h2: A2 --> D2) is a pair of functions fA: A --> A, 

fD: D --> D as in

 

 

 

 

 

 

 

satisfying t2fA = fDt1 and h2fA = fDh1.

Before we go any further, let’s look at an object O in the category of graphs
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and save it to monkey later.

 

Now, if we look back at the definition of category, it looks like we recognized (1), (2), 

and (3) of the data of a category in the case of our category of graphs.  Now we have to 

look for (4), i.e., identity map.

 

What’s an identity map in the category of graphs?  Thanks to the definition, we need not 

get lost in thought.

 

An identity map is a map.  Before we unwrap this goodie, let’s parrot the definition.  For 

each object O (t: A --> D, h: A --> D), there is an identity map with object O as both 

domain and codomain of the identity map as in 1O: O --> O.  Now let’s bite into the 

chocolate before it melts away.  Let’s recollect that a map (which is what an identity 

map is first and foremost) in the category of graphs is a pair of functions satisfying a pair 

of equations (our life couldn’t have been easier), which when translated to the case of 
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identity map 1O: O --> O translates to a pair of identity functions 1A: A --> A, 1D: D --> D 

as in 

 

 

 

 

 

 

 

 

satisfying a pair of equations t1A = 1Dt and h1A = 1Dh.

 

Do they?  Don’t we have to check to see if t1A = 1Dt and h1A = 1Dh?  Aren’t we defining?  

If so, by definition, isn’t t1A = 1Dt and h1A = 1Dh.  Well, don’t we want our definition of 

Category of Graphs to be consistent with our, again, definition of Category?  Definition, 

in delimiting, description, changes—changes in practice—in the practice of describing.  

Holy cow!  For now, as an exit-strategy, let’s just say we aren’t modern enough—enough 

to go post-modern, go [all-out] postal.  Jeez!

 

Let’s now check if 1O = (1A, 1D) is a map in the category of graphs.  In other words, let’s 

check if t1A = 1Dt and h1A = 1Dh, noting that t: A --> D, h: A --> D.

 

Looking back at the definition of the category, we see:
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If f: A --> B, then 1Bf = f and f1A = f.

 

So, given t: A --> D, 1Dt = t and t1A = t.  With another so in tow, we have t1A = 1Dt.

In a similar vein, given h: A --> D, 1Dh = h and h1A = h.  Therefore, as earlier, h1A = 1Dh.

 

Thus the identity map 1O: O --> O defined as a pair of identity functions 1A: A --> A, 

1D: D --> D is indeed a map in the category of graphs.

 

Now, is the map 1O: O --> O in the category of graphs an identity map in the category of 

graphs?

 

Wut!

 

Well, when in doubt, we study the definition—definition of category.

 

We have, in the category of graphs, a map

 

 

 

 

 

 

with a domain object
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and a codomain object

 

 

 

 

 

satisfying t2fA = fDt1 and h2fA = fDh1.

 

For each object of the category we have an identity map with the very object as both 

domain and codomain.  So, corresponding to the object

 

 

 

 

 

 

we have the identity map
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satisfying t11A1 = 1D1t1 and h11A1 = 1D1h1.

 

And corresponding to

 

 

 

 

 

we have the identity map

 

 

 

 

 

 

satisfying t21A2 = 1D2t2 and h21A2 = 1D2h2.
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To sum up, we have three maps

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What are we going to do with this trinity?

 

Looking ahead, in the rear-view mirror, at the definition of category, we see the identity 

laws

If f: A --> B, then 1Bf = f and f1A = f

that maps in a category must satisfy.
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Importing these beautiful laws into our category of graphs, we see that we have to, first, 

see if the composite of 

 

 

 

 

 

 

 

 

 

is equal to

 

 

 

 

 

 

 

 

 

 

The composite map of (1A1, 1D1) and (fA, fD) shown above can be drawn as
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which is equal to

 

 

 

 

 

 

 

 

So is the case with the other identity law.

 

Now, I feel like, in explaining something, I said something like, ‘that’s what it means’ 

to which I can hear you say something like ‘what is that that that that it is supposed to 

mean?’  Or, in more politically-correct terminology, there’s always room for clarification, 

which I’ll provide in terms of the example
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of an object in the category of graphs we saw earlier, but didn’t get a chance to look at.



Isomorphisms in the Category of Graphs

 

Let’s do Exercise 6 (Conceptual Mathematics, page 159).

Exercise: Each of the following graphs is isomorphic to exactly one of the others.  

Which?
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Earlier on (page 158) we learn that two graphs are isomorphic if we can exactly match 

arrows of one graph to arrows of the other and dots of one to dots of the other; in such a 

way that if two arrows are matched, then so are their source-dots and so are their target-

dots.  Listening to what we are just told we find it, comforting, notwithstanding the 

demanding exactness, to learn that math is our making—in our hands.  

Whatever.

 

Let’s first label the arrows and dots of the given six graphs.
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Now let’s see how isomorphism looks like in the case of something much more familiar, 

say, sets.

 

Consider two sets A = {a1, a2} and B = {b1, b2} shown below:

 

 

 

 

 

 

Clearly, A and B are two different sets.  So, we can ask, ‘are there any similarities 

between the two sets A, B?’  In asking this question, we are rather boldly, but with good 

reason, asserting that two different things can be similar in more than one respect.  (On 

a not so tangential note, when we are around kids, we often mistake their statements for 

questions—for not so well-formulated questions failing to recognize them as what they 
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indeed are: answers we all knew full-well, but have forgotten during the course of our 

schooling by the society, which is what my sister’s daughter Bhavana has been teaching 

me recently.).  Well, this is not as high-funda as it sounds.  After all, we can be similar in 

just one dimension, say, living, or in exactly two dimensions, say, living and feeling, so 

on and so forth.

 

Returning to our sets A and B, we say that A and B are isomorphic (same shape, which 

in the case of sets happens to be size) if there exists an isomorphism between A and B.  

Does this sound somewhat like: two different things are similar if there exits a similarity 

between the different things.  It better; welcome to the wonderful wizard of obvious.

 

Now let’s ask, ‘what is isomorphism?’  An isomorphism is a map.  A function f: A --> B 

from domain set A to codomain set B is an isomorphism if there exits a function 

g: B --> A such that the composite function of f and g, gf: A --> B --> A = 1A, the 

identity function on A and the composite function of g and f, fg: B --> A --> B = 1B, the 

identity function on B.

 

Given that we already know that the given two sets A = {a1, a2} and B = {b1, b2} are of 

the same size, i.e. |A| = |B| = 2, let’s see if A and B are isomorphic.  All we need is one 

isomorphism between A and B.  

 

 

 



 

Consider a function f: A --> B, whose internal diagram is shown below:

 

  

 

 

 

 

and in terms of equations f(a1) = b1 and f(a2) = b2

 

and a function g: B --> A, whose internal diagram is shown below:

 

 

 

 

 

 

and in terms of equations g(b1) = a1 and g(b2) = a2.
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B
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b2

B
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a2

A



 

The composite function gf: A --> B --> A is

 

 

 

 

 

 

which is equal to  

 

 

 

 

 

 

Looking above we see gf: A --> A = 1A, i.e. 1A(a1) = a1 and 1A(a2) = a2.
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A
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B
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A
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gf

a1

a2

A

a1
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A



 

 

The composite function fg: B --> A --> B is

 

 

 

 

 

 

 

which is equal to

 

 

 

 

 

 

Looking above, one more time, we see that fg: B --> B = 1B, i.e. 1B(b1) = b1 and 

1B(b2) = b2.

 

So we say A and B are isomorphic; are of the same size without even counting the 

number of elements of either set A or B.  I guess this is what it means to participate in the 

practice of plain-sight, of stating the obvious.

g

b1

b2

B

a1

a2

A

b1

b2

B
f

fg

b1

b2

B

b1

b2

B



 

To be continued…



Exercise 6 (Conceptual Mathematics, page 159)

 

Let’s complete Exercise 6; we have a long ways to separating in the category of graphs 

(Conceptual Mathematics, page 215).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each one of the above six graphs is isomorphic to exactly one of the other five graphs.
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Let’s start with graph 1.

 

 

 

 

 

 

 

 

 

Looking at the other five graphs, it appears as though graph 4 is like graph 1.  Let’s place 

them next to one another.
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Let’s now see if there is an isomorphism between the above two graphs depicted below.

 

 

 

 

 

 

 

 

 

Let’s first note that s1: A1 --> D1 and t1: A1 --> D1 are given as shown below.

 

 

 

 

 

 

 

 

 

 

 

s4 t4

D4

A4

z4x4 y4

e4b4 c4

s1 t1

D1

A1
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e1b1 c1

s1
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D1 x1 z1y1

A1 b1 e1c1



So are s4: A4 --> D4 and t4: A4 --> D4 as shown below.

 

 

 

 

 

 

 

Now to show that the graph 

 

 

 

is isomorphic to the graph

 

 

 

we need to find an isomorphism f14: (s1, t1) --> (s4, t4)

 

 

 

 

 

 

t4

D4

A4

x4 z4y4

b4 e4c4

s4

D4

A4

x4 z4y4

b4 e4c4

s1

t1
D1z1x1 y1A1 e1b1 c1

s4

t4
D4z4x4 y4A4 e4b4 c4

A1

D1

s1 t1

A4

D4

s4 t4

f14
A

f14
D



 

In order for f14 = <f14
A, f14

D> to be an isomorphism, first, it has to be a map in the 

category of graphs satisfying s4f14
A = f14

Ds1 and t4f14
A = f14

Dt1

(don’t we love subscripts and superscripts; oops, no venting)

 

Next up, in order for the map f14 = <f14
A, f14

D> to be an isomorphism, we need a map 

f41 = <f41
A, f41

D>

 

 

 

 

 

 

which, by virtue of being a map, satisfies s1f41
A = f41

Ds4 and t1f41
A = f41

Dt4 and along with 

f14 = <f14
A, f14

D> satisfying

 

f41
Af14

A = 1A1 and f41
Df14

D = 1D1

 

f14
Af41

A = 1A4 and f14
Df41

D = 1D4

 

 

 

 

A4

D4

s4 t4

A1

D1

s1 t1

f41
A

f41
D



Let’s start with f14 = <f14
A, f14

D> depicted as

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

satisfying s4f14
A = f14

Ds1 and t4f14
A = f14

Dt1

which is short-hand for a more verbose statement saying for f14 = <f14
A, f14

D> to be a map 

in the category of graphs, the functions f14
A and f14

D should be such that if the function 

f14
A: A1 --> A4 assigns an arrow in the codomain set A4 = {b4, c4, e4} to an arrow in the 

domain set A1 = {b1, c1, e1}, then the function f14
D: D1 --> D4 must assign a dot in the 

codomain set D4 = {x4, y4, z4} to each one of the dots in the domain set 

D1 = {x1, y1, z1} in such a way so as to preserve the source, target relations of arrows in 

x4 z4y4

b4 e4c4

t1

D1 x1 z1y1

A1 b1 e1c1

t4

D4

A4
f14

A

f14
D
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D1 x1 z1y1

A1 b1 e1c1

s4

D4

A4

x4 z4y4

b4 e4c4
f14

A

f14
D



the domain graph (A1, D1) in the codomain graph (A4, D4) (pardon me for being cryptic 

here; gettin lazy).

 

Once we find a pair of functions <f14
A, f14

D> satisfying

 

s4f14
A = f14

Ds1 and t4f14
A = f14

Dt1

 

we, then, have to find another pair of functions <f41
A, f41

D> satisfying

 

s1f41
A = f41

Ds4 and t1f41
A = f41

Dt4

 

Then we have to see if the maps f14 and f41 are inverses of one another satisfying

 

f41
Af14

A = 1A1 and f41
Df14

D = 1D1

 

f14
Af41

A = 1A4 and f14
Df41

D = 1D4

 

Once we have an isomorphism between graph 1 and graph 4, that is once we have seen 

that graph 1 is isomorphic to graph 4 (we also have seen that graph 4 is isomorphic to 

graph 1, which is reminiscent of saying saying A = B is same as saying B = A; here it 

may be of some interest to note cases wherein, going by some metric, for example, dog 

may be similar to animal without necessarily asserting that animal is similar to dog; 

think of arrow vs. loop also), we have to show that graph 1 is not isomorphic to the other 



four graphs (graph 2, graph 3, graph 5, and graph 6); while we are at it we might as 

well show that graph 4 is also not isomorphic to graph 2, graph 3, graph 5, and graph 6, 

which subliminally reads like we are too comfy in here and are somewhat little less than 

enthusiastic to face the unfamiliar universal properties of the familiar addition (1 + 1 = 2) 

as if afraid of something short of an excursion from

1 + 1 = 2

to

1 apple + 1 orange = 2 fruits

in thought.


