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1. Where  are the negative sets? 
Though ill-posed, the question is suggestive; a good answer should complete the diagram 

$ $ 
N c- ), Z 

where S is the category of  finite sets; we seek an enlargement E, the isomorphism classes 
of which should give rise to all integers, rather than just natural numbers. Why is this 
desirable? The utility of the observation that natural numbers are the isomorphism classes of 
finite sets derives primarily from the fact that sets can carry structure. For instance, with 
Euler's function tp(n) (the number of integers 0 < x < n relatively prime to n), the equation 
tp(mn) = tp(m)cp(n) for relatively prime m and n is but a pale reflection of the isomorphism 
of  rings Z/mn = Z/m x Z/n. The isomorphism of rings induces an isomorphism of their 

groups of units, while the equation records only that these groups are isomorphic as sets. 
What we seek, then, is a category E which would allow us to "lift" equations between 

integers to isomorphisms between objects, because the isomorphism may then preserve some 
structure relevant to the equation under consideration. 

2. A "proof" that there are no  negative sets. 
We would hope to find E with finite coproducts and finite products, satisfying at least the 

distributive laws (that the canonical maps 0 -4 A x 0 and A x B + A x C --~ A x (B + C) are 
isomorphisms). But already with the coproduct, a difficulty presents itself: A + B = 0 
implies A = B = 0, since to have exactly one map A + B -4 X is to have exactly one map 
A -4 X and one map B -4 X. So the isomorphism classes of objects in a category with 

coproducts never constitute a nontrivial group under addition. The most we can expect is that 
the universal map from theset  of (isomorphism classes of) objects of E to a cancellative 
monoid (a + b = a + c implies b = c) will have Z as codomain. 

To clarify our goal, then: E D S should be a category satisfying distributive laws, and 

its "rig" of isomorphism classes should have the ring of integers as its reflection into 
cancellative rigs. A rig is a commutative "ring without negatives", that is, having two 
commutative monoid structures (0, +) and (1, x) related by the distributive laws 0 = a0 
and ab + ac = a(b + c). Examples abound, e.g. N and N/(1 + 1 - 1), whose modules are 

commutative monoids and, respectively, sup-semilattices. Other examples include the rig of 
isomorphism classes of vector bundles on a space, or of finitely generated projective modules 
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over a commutative ring, under direct sum and tensor product. While it is customary to 
reflect rigs into rings by tensoring with Z, it is by no means always desirable to ignore the 
extra information contained in the rig. (Steenrod remarked that much of his mathematics 
came from analyzing the information that others had deliberately discarded by performing 
such identifications; their "garbage", he called it.) Of most importance for us is the Burnside 
rig of isomorphism classes of objects in any distributive category (defined below). 

3. Euler and counting. 
Undeterred by the proof that there are no negative sets, Euler proceeded to find them, in 

his analysis of the formula V - E + F = 2 for the numbers of vertices, edges, and faces in 
suitable polyhedra. While some later accounts focus on this "Euler characteristic" as a 
topological invariant, we wish to emphasize instead the irrelevance of topology, and treat the 
Euler characteristic of a polyhedron rather as a finitely additive measure. Roughly, Betti 
numbers (ranks of homology groups) depend on how a space is pieced together, but Euler 
characteristic doesn't; if a space is a disjoint union of two parts, the Euler characteristics add. 

Euler's analysis, which demonstrated that in counting suitably "finite" spaces one can get 
well-defined negative integers, was a revolutionary advance in the idea of cardinal number- -  
perhaps even more important than Cantor's extension to infinite sets, if we judge by the 
number of areas in mathematics where the impact is pervasive. In any case, it leads us to the 
desired categories E, which we now describe. 

4. Polyhedra and semialgebraic sets. 
By apolyhedron, (respectively, semialgebraic set ), we mean a pair n, P c R n, where 

P is in the boolean algebra generated by subsets of the form f(xl, x 2 . . . . .  Xn) > 0, with 
f = b + Y~ aix i (or, respectively, f a polynomial.) These are the objects of a category P 
(respectively, SA); a map in the category from P c R n to Q c R m is any map of sets 
whose graph (in •m+n) is a polyhedron (respectively, a semialgebraic set.) We'll treat P 
in some detail, and just describe the corresponding facts for S/k. 

A typical polyhedron in the plane might be the union of the open first quadrant and a line, 
with finitely many triangles, line segments, and points added or deleted. Any bijective map 
in P, forexample from (0, 1)u {2} u (3, 4) to (0,2) by f ( t )= t  for t ¢  (0, 1), f(2)= 1, 
and f(t) = t - 2  for t ~ (3, 4), is invertible. Perhaps a better name for P would be SL, for 
"semilinear", were it not for the usage requiring semilinear maps to be continuous. 

The categories S, P, and SA are distributive, where E distributive means that • has 
finite lirnits, finitecoproducts, and E2---~E/(t+I) by (A,B)I ) [ (A+B)- -~( I+I ) ]  isan 
equivalence. From this it follows that E satisfies the earlier distributive laws and that E ~  
is distributive for any object B in E. (The terminology is not yet standard, with reason: 
Waiters, Cockett, and others have shown that a weaker notion, not requiring all finite limits, 
is also useful in computer science and elsewhere. The slrong notion we use here was 
suggested by lectures of Lawvere.) In addition these categories are boolean: every subobject 
is a summand; or equivalently, subobjects of P in E are classified by maps P ~ 1 + I. 
The full subcategory P0 c P of bounded polyhedra (those which are bounded in R n) shares 
all these properties. Our basic task is to calculate the Burnside rigs of these categories and to 
show their relationship to our original problem. We preface this with some general remarks 
on Burnside rigs. 
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5. On Burnside rigs of distributive categories. 
The Burnside rig (of isomorphism classes of  objects, added by coproduct and multiplied 

by product) of  a distributive category has some special features, the first of  which we have 
already seen. 

1) If  a + b = 0 ,  then a = b = 0 .  
2) If  ~ a  i = ~b j ,  then there exist cij such that ~jci :  = a i and Y'.icij = bj. 
3) If  a is connected (a # 0, and a = b + c implies ~ = 0 or c = 0), then a is 

cancellable (a + x = a + y implies x = y). 
4) 1 is cancellable (whether it is connected or not; in our examples it is connected). 
5) If  a b = l ,  then a = b = l .  
Properties (1) and (3) follow from (2), which follows easily from the observation that 

coproduct decompositions A = ~ i A i  correspond to maps A --> 1 + 1 + ... + 1 (I terms). I 

don ' t  know what additional properties characterize Burnside rigs o f  distributive categories. 

6. The Burnside rig of bounded polyhedra: the open interval as "-1". 
To calculate the Burnside rig B(P0) of  the category of  bounded polyhedra, it turns out 

that there is only one basic observation needed. The isomorphism class x of  the open 
interval (0, 1) satisfies x = 2x + 1, or perhaps better, x = x + 1 + x, because 

(0, 1) = (0, 1/2) w {1/2} w (1/2, 1) 

is a coproduct decomposition. (Recall that maps in our category are not required to be 
continuous.) Thus while (0, I) is not "minus one", it comes as close as it can: 0 = x + 1 is 
impossible, but x = 2x + 1 can be achieved. 

Hence the canonical map from the free rig on one generator, N IX], to ~ 0  ), by 
X I ) x, factors through N[X]/(X - 2X + 1): 

H[X]/(X ~ 2X + 1) > B(?0), 

and I claim this is an isomorphism. Surjectivity is easy, because every bounded polyhedron 
is a disjoint union of  open simplices An; and A ° = (0, 1) n. The heart o f  the matter is the 

n 

injectivity o f  our map; and for this we need to introduce two invariants, Euler characteristic 
and dimension. 

For any rig R (recall that all rigs are commutative), define the Euler characteristic 

R X ......... ~ E(R) 

to be the universal map to a rig with additive cancellation. The description of  this is well 
known: E(R) = R/~, where r -  s if and only if there is a t with r + t = s + t. Similarly, 
define the dimension 

R dim,,,,,, ~ D(R) 

to be the universal map to a rig in which I + 1 = 1 (and hence x + x = x). This seems less 
known: D(R) = R/~, where r ~ s if and only if  r < s and s < r, where r < s means that "a 
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finite sum of copies of s can swallow r", i.e. there exist a natural number n, and t e R, 

with r + t = ns. 
Let R = N[X]/(X ~ 2X + 1); anticipating a bit, we will call this the rig of geometric 

cardinalities. Now, E(R) and D(R) are easy to calculate; we get E(R)= Z, with 
x(X) = -1. Equally simple, if less familiar, is D(R): it is 

D(R) = { 0 = d  -~,  1 = d  o , dl, d 2 . . . .  } 

with did j = d i+j and d i + d j = d max(i'j). The exponential notation is in keeping with the idea 
that multiplying poIyhedra adds dimensions, while adding gives the maximum of the two 
dimensions. 

To complete the proof that R = N[X]/(X - 2X + 1) + ~ 0  ) is an isomorphism, we 

need only define a rig homomorphism 

(-~-, dim ): B(P0) ---+ Z x D(R), 

check that the composite of this with R > B(P0) is ()~, dim), and show that ()~, dim) is 
injective. This last is a simple induction, after noting that 0G dim)(f(X)) = (f(-1), degree f). 
So the definitions of ~ and dim need attention. One defines these, at an object P, by 
writing P as a disjoint union of atoms A in the boolean algebra given by a hyperplane 
decomposition of space, P = Uatom s AcP  A, and then setting 

~(P)  = ~ (-1) gdim(A) and dim(P) = d sup gdim (A), 

where gdim(A) is the ordinary geometric dimension of the atom A. It's easy to check that 
adding a hyperplane leaves these quantities unchanged, and then that they're 
isomorphism-invariant. 

Summing up: a geometric cardinality can be identified with an equvalence class of 
polynomials with natural number coeficients - -  two such being equivalent if they have the 
same degree and the same value at -1 - -  or with an isomorphism class of bounded 
polyhedra. As we'll see shortly, it is also an isomorphism class of semialgebraic sets, or of 
finitely subanaiytic sets, and is an equivalence class of constructible sets (the boolean closure 
of the class of algebraic sets in Cn). 

7. The Burnside rig of unbounded polyhedra. 
The major themes of this paper can be understood without the corresponding (and 

somewhat more cumbersome) calculation for 17, the category of all polyhedra. Nevertheless, 
since P is of interest in connection with linear programming and related matters, we give a 
sketch of the necessary changes to convert the calculation for P0 to that for P. There are 
two generators: x = (0, 1), as before, and y = (0, o~), We easily get three relations: 
x = 2 x +  1, y = x +  1 + y  because (0, oo) = (0, 1)to{1}u(1, oo), and y 2 = 2 y 2 + y  because 
(0, ~o) 2 = {(r, s) I r < s} va {(r,s) I r = s} vo {(r, s) I r > s}. So the rig R presented by these maps 
to ~ ) :  

R= N[X, Y]/(X - 2X + 1, Y ~ X + 1 + Y, y 2  ~ 2y2 + y )  ---+ p,(p), 
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and we claim this is an isomorphism. As before, we calculate: 

E(R) = Z x Z, with x(X) = (-1, -1) and %(Y) = (-1, 0). 

(The first relation gives, after cancellation, 0 = X + 1, so we get Z as subrig; then the 

second relation becomes vacuous, while the third gives that Y + 1 is idempotent in E(R--).) 
Again, D(R) is less familiar. An element of D(R) is a finitely generated (hence finite) 
order-ideal in the p~tially ordered set of monomials X~Y J, ordered as a monoid with 
I < X < Y; so X IYJ < X p Yq means j < q and i +j < p + q. These order ideals are 
multiplied by multiplying elementwise and down-closing, and are added by union. (Note that 
D(R) could have been given by a similar description, using the poset {1 < X < X 2 < .... }.). It 
is worth noting that both D(R) and D(R) have multiplicative cancellation: for a e 0, ab = 
ac implies b = c. This will show that any (bounded) polyhedron with cancellable (bounded) 
Euler characteristic is multiplicatively cancellable. 

Checking the surjectivity of R --~ B(P) by X I > (0, 1) = x and Y j > (0, ~,) = y is 

harder than before, but not much. W e  must show that every polyhedron P is isomorphic to a 
sum of monomials (0,1) ~ x (0, ~)J. For this, we show that P can be decomposed into pieces 
each linearly (rather than just piecewise-linearly) isomorphic to A ° x (0, ,,~)J. This is done by 

1 

induction on the geometric dimension of P, and P can be supposed to be an atom in a 
decomposition of R n by hyperplanes; but it is important to first ensure that the family of 

hyperplanes includes at least n that are independent, i.e. the linear functionals f in the 
equations f(x) = c are linearly independent. By induction, each face of the atom P can be 
suitably decomposed; and then one decomposes P by choosing any point p in P and 
taking the open truncated cones consisting of the points tp + (1 - t )x  where 0 < t < 1 and x 
ranges over any of th.e parts into which, the faces of P have been decomposed. The truncated 
cone on A~ x (0, ~,)J is A ° x (0, ,o)J These cones do not exhaust P, but what's left is an i+l 
infinite closed cone with vertex p; and decomposing its (bounded) intersection with a 
suitable hyperplane into open simplices cuts this cone into a sum of powers of y. The whole 
proof is thus quite parallel to the proof that bounded polyhedra can be decomposed into 
disjoint open simplices by decomposing the boundary, picking a point inside, and "coning"; 
the only new ingredient is that in the unbounded case there is still a cone left over, which one 
proves can also be decomposed as a sum of parts linearly isomorphic to monomials in y. 

To map B(P) to E(R) x D(R) turns out to be a bit easier than one might expect; the clue 
is that each atom in a decomposition of N n (by at least n independent hyperplanes, as 
before) is in fact (polyhedrally isomorphic to) a monomial x~y J. The sum i + j  is just the 
geometric dimension of the atom, while j is that of the cone in N n obtained by intersecting 

the closed half spaces given by the hyperplanes through the origin parallel to the faces of P. 
It's easier not to prove this at this stage; for now, it shows how to define the map from B(P) 
to E(R) x D(R). The proof that this map is well-defined, i.e. unchanged by adding another 

hyperplane and isomorphism-invariant, is straightforward; and the rest goes just as before, 
with just a little more care in the inductive argument to show that R ~ E(R) x D(R) is 
injective. 

A geometric .description of the "Euler characteristic" x(P) = (m, n) and "dimension" 
dim(P) = F c {X1Y J } is now not difficult. First, m is the "expected" Euler characteristic, 

since x = (0, 1) and y = (0, oo) are "alike", except that there is no piecewise-linear 
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isomorphism between them. (They are semi-algebraically isomorphic, by t : - t -1 - 1. 
This will be useful later.) Second, n is the "bounded Euler characteristic" of P c R n, i.e. 
)~(Pn C) for any sufficiently 1.arge closed cube C = I-B, B]n. The dimension of P c R  n is 
just the set of monomials x ~ yJ which are subobjects of P (linearly, if you want.) For 
example, for a geometrically 2-dimensional polyhedron, the ~ossible dimensions, in 
increasing order, are the order ideals generated by x 2, by x and y, by xy, and by y2, 
exemplified by, respectively, a 2-simplex, the union of a 2-simplex and a ray, an infinite strip 
bounded by parallel lines, and the plane. 

8. Re la ted  e x a m p l e s .  
Modulo well-known facts, it is easy to check that the Burnside rig of the category $A of 

semialgebraic sets is the same as that for P0' the rig R of geometric cardinalities. The main 
ingredient is Hironaka's theorem of semialgebraic triangulability of semialgebraic sets. 

Thus the inclusions of distributive categories 

S c ) PO ~ ) P r ) S A  

(the first two of which are full) give, on passage to Burnside rigs, 

N ) R  ~ R  ) R ,  

exhibiting, geometrically, R as a retract of R (by y I ) x). 
The geometric interpretation of the injectivity, for each of these rigs A = N, R, or ~ of 

A --~ E(A) x D(A), should be clear. For instance, for polyhedra, it says: if P and Q are 
polyhedra which are "cancellation equivalent" (i.e. P + T --- Q + T for some polyhedron T) 
and "comparable" (i.e. P < nQ and Q < mP for some natural numbers m, n), then P = Q. 
I do not know a proof of this, in any of the categories P0' P' SA, which does not use 
essentially the entire calculation sketched above! A similar remark applies to proving that 
2P = 2Q implies P -- Q. For these, it might be helpful if one could find a simpler 
characterization of those rigs A for which A ~ E(A) x D(A) is injective; that is, those in 
which a + t = b + t  & a + s = n b  & b + r = m a  implies a = b .  

One trivial generalization: everything said about P0 and P remains valid if the reals are 
replaced by any ordered field; for instance, the Burnside rig is unchanged. (One should note 
that not every order-convex subset of the line is a polyhedron; for instance with Q as the 
field, (0, ~]2) is not polyhedral, since it is not def'med by finitely many inequalities with 
rational coefficients.) More interesting is the category I~A of finitely subanalytic sets, 
which van den Dries has shown shares enough of the properties of SA that our calculation 
also gives R, the rig of geometric cardinalities, as P(FA). All our categories satisfy the 
axiom of  choice: every epimorphism has a section; but FA and SA satisfy the stronger 
generic triviality theorem: every map A --~ B is isomorphic to a coproduct of product 
projections, Y. Bi× F i --9 F~B i. This is false in P, and even in P0' as the example of the 
map from the open triangle with vertices (0, 0), (0, 1), and (I, 1) to the interval (0, 1) by 
projection on the first coordinate demonstrates. However, any map A ~ B in P0 is a 
coproduct of maps A i --9 B i in which the isomorphism class of the fiber is constant; and the 
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Euler characteristic behaves as if such a map were a product: z(Ai) = z(Bi))C(fiber). This 
observation suggests a reduced Burnside rig in our next example. 

Genuinely different is the category CS of constructible sets: an object is a subset of C n 
in the boolean algebra generated by zero-sets of polynomials; a map is a function with a 
constructible graph. Essentially by construction, this category is distributive and boolean, 
though without axiom of choice; but its Burnside rig is complicated. A reduced Burnside rig 
Bred(CS) and rig homomorphism B(CS) --~ Bred(CS) are defined to be universal for rig 
homomorphisms r~ with domain B(CS) satisfying: whenever A ~ B is in CS and 
~(fiber) is constant, ~(A) = rc(13)rc(fiber). This gives rise to the rig of geometric cardinalities 
again! The generator X is the twice-punctured complex plane C\{0,  1}. To get the desired 
relation r~(X) = 2r~(X) + I, consider Y = C \  {0, 1, -1 }, and note that X = Y + 1 while all 
fibers of the squaring :map Y --) X have two points. The proof that X generates is 
inductive, projecting the construcfible set on a coordinate hyperplane; and the injectivity of 
the map from R to our reduced rig is proved by using the forgetful functor from CS to SA, 
viewing C n as R 2n. (This calculation is related to work of van den Dries, Marker, and 

Martin, "Definable equivalence relations on algebraically closed fields", J. Symbolic Logic 54 
(1989) 928-935.) It is suggestive that in this example as in the earlier ones, the "minus 1" 
object comes from the basic bipointed parameter object for homotopies: {0, 1 } ~ C for 
algebraic geometry, respectively {0, 1 } ---) [0, 1] for topology, by deleting the two marked 
points. 

Applications of these ideas to geometry will have to be treated on another occasion; some 
work by Beifang Chen on curvature measures along these lines will appear in Advances in 
Mathematics. Also postponed are the analysis of colimits and of the relation of a boolean 
distributive category to its "Gaeta topos", following ideas of Lawvere which have exerted a 
continuing influence on the shape of the work described here. 

I wish to express my gratitude to the organizers of the conference, and particularly to 
Aurelio Carboni and many colleagues at the University of Milan, for their warm and generous 
hospitality. 

This paper is in final form and will not be published elsewhere. 


