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Variable Structures in Topoi 
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In memory of my eldest son, William Nevin. 

I have organized this chapter into three sections as follows: 

1. The conceptual basis for topoi in mathematical experience with 
variable sets. 

2. A formal theory of variable abstract sets as a relativized foundation 
for geometry and analysis, with due attention to " t h e " case of constant sets. 

3. Sheaves of continuous maps, étendues, and a proposed distinction 
between variable quantities in particular and variable structures in general. 

Readers of Section 1 who are not too familiar with recent work on 
topoi may find clarification of some concepts in Section 2. Section 3 
treats two aspects of sheaf theory not yet sufficiently incorporated into 
general topoi theory, with some remarks on the possible relevance of 
their relation to analysis and philosophy. 
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1. 

Around 1963 (the same year in which I completed my doctoral 
dissertation under Professor Eilenberg's direction) five distinct developments 
in geometry and logic became known, the subsequent unification of which 
has, I believe, forced upon us the serious consideration of a new concept 
of set. These were the following: 

"Non-Standard Analysis" (A. Robinson) 
"Independence Proofs in Set Theory" (P. J. Cohen) 
"Semantics for Intuitionistic Predicate Calculus" (S. Kripke) 
"Elementary Axioms for the Category of Abstract Sets" (F. W. Lawvere) 
"The General Theory of Topo i " (J. Giraud) 

Apart from these specific developments, there has long been in geometry 
and differential equations the idea that the category of families of spaces 
smoothly parametrized by a given space X is similar in many respects to 
the category of spaces itself, and indeed, from the point of view of 
physics, it is perhaps to such a category with X "generic" or unspecified 
that our stably correct calculations refer, since there are always small 
variations or further parameters that we have not explicitly taken into 
account; the " n e w " concept of set is in reality just the logical extension 
of this idea. Of the five specific developments referred to, the decisive one 
for the concept of variable set was the theory of topoi; while nonstandard 
analysis, the forcing method in set theory, and Kripke semantics all 
involved, as will be explained below, sets varying along a poset X, it was 
Grothendieck, Giraud, Verdier, Deligne, M. Artin, and Hakim who, by 
developing topos theory, made the qualitative leap—well-grounded in the 
developments in complex analysis, algebraic geometry, sheaf theory, and 
group cohomology during the 1950s—to consideration of sets varying along 
a small category X and at the same time emphasized that the fundamental 
object of study is the whole category of sets so varying. Those insisting on 
formal definitions may thus, in what follows, consider that "variable set" 
simply means an object in some (elementary) topos (just as, using an 
effective axiom system to terminologically invert history, we sometimes say 
that "vector" means an element of some vector space). 

Traditionally, set theory has emphasized the constancy of sets, and both 
Robinson's nonstandard analysis and Cohen's forcing method involve 
passing from a system V

7
 of supposedly constant sets to a new system ¥ ' 

that still satisfies the basic axioms for constant sets; however, it is 
striking that both methods pass "incidentally" through systems of variable 
sets, and further, that the distinction between the two methods lies in the 
distinction between two fundamental ways of analyzing variation. 
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Let us recall what these two ways of analyzing variation are, first in the 
case of variable quantity. Both involve separating a domain of variation 
and a type of quantity (discrete, continuous, scalar, vector, tensor, operator, 
functional, etc.); let us fix the case R of continuous scalar quantity since 
the basic distinction between the two analyses is in how the domain of 
variation is treated. According to the first analysis, the domain X consists 
of "po in t s " (points of space, instants of time, particles of a body, etc.), and a 
variable quantity is identified with a mapping X -+R; conditions such as 
continuity or measurability of the variation have to be imposed as 
additional properties involving additional structure on X. Although the 
foregoing is the usual view, it is not always adhered to in practice; for 
example, if Χ, μ is a measure space, then any member / of the usual 
Lp(X, μ) is clearly a variable quantity with domain of variation X, 
although it makes no sense to speak of the value of / at a point x. The 
second analysis is to consider that the domain X consists of parts 
(subregions of space, subintervals of time, parts of a body, etc.) and 
that a variable quantity is identified with a lattice homomorphism from 
parts of R into parts of X; this remains sensible even if parts of X with 
μ-null difference are regarded as indistinguishable. The first analysis may be 

considered as a special case of the second by considering X = 2
X

. Conversely, 
if X is a complete Heyting algebra we can define its points as the 
infinitary sup-preserving lattice homomorphisms X - • 2, which if X = 2*, 
or more generally if X is a sober topology for X, will correspond exactly to 
the mappings 1 -> X, i.e., to points in the usual sense; of course if X is 
measurable sets modulo null sets there often will not be any points. We 
may also consider as ideal points the finitary lattice homomorphisms 
X 2, which in case X = 2

X
 are just the ultrafilters on X; i.e., the ideal 

points are the points of the compactification, and the axiom of choice tries 
to reassure us that at least ideal points exist for any X. 

Returning now to nonstandard analysis and forcing, we start with a 
model Sf of a theory of constant sets. If X is a given (say countable) 
constant set, then Sf

x
 (i.e., all functions from X to Sf ) is a system of variable 

sets (conforming to the first analysis of variation). If we " s t o p " the 
variation at a point of X, we of course get back Sf\ but if we stop 
("localize") the variation at an ideal point in β(Χ) — X, we get a new system 
Sf of sets that satisfies the same elementary axioms (e.g., those expressing 
constancy) as Sf\ but which will definitely be different from Sf. In 
particular, it will contain new "infinitesimal" elements—the residual traces 
of the variation that has been "s topped"—shown by Robinson to permit 
a reduction in the complexity of many definitions and proofs in analysis. 
For the forcing method we need, however, the second description of 
variation, applied to variable sets rather than variable quantities; instead 
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of a set X we need a poset Ρ in £f. As was later clarified by Scott and 
Solovay, it is more invariant though sometimes less convenient to enlarge 
Ρ to the Boolean algebra X of Π ~Ί -stable elements of the Heyting 
algebra of all order-preserving maps P - > 2 ; this X typically has no points, 
but we can still consider sets £, which vary along it as follows: for each 
AeX, E(A) e and whenever A ç Β in X, there is a restriction mapping 
E(B)-• E(A), and these fit together functorially whenever / I c ß c C ; 
moreover, there is the condition 

E(A)*Y\E(At) 
i E / 

whenever A = £ i e 7 A{ is a disjoint union in X. If £ 1 ? E2 are as just described, 

a "mapp ing" E{ —^E2 means any family EX(A) E2(A) of mappings 

in ff indexed by the A in X and satisfying the commutativity 

E,{B)^E2{B) 

whenever A ç Β in X 

Ει(Α)-^*Ε2(Α) 

Thus we have defined a category ê of sets varying along X (usually 
called Boolean-valued sets). Below we will see that it is not necessary to 
define the traditional ε-relation in S : in any case, the interesting set-theoretic 
questions such as choice, replacement, the continuum hypothesis, measurable 
cardinals, etc. are categorical invariants anyway, that is, the questions 
depend only on how maps compose, not on an a priori notion of iterated 
membership. We can again localize at any chosen ideal point of X to obtain 
ïf\ a new system of sets that look constant insofar as the most elementary 
properties [such as axiom of choice, two valuedness (see below)] that 
distinguish constant from variable sets are concerned, but unlike the 
previous case of nonstandard analysis, some of the deeper properties that 
had been proposed to enforce constancy, such as the axiom of constructibility 
(by taking as Ρ the basic open sets of the Cantor space) or the continuum 
hypothesis (by taking Ρ to be the basic open sets of a big generalized 
Cantor space), are as Cohen showed destroyed by the passage ί/

}
 ^>ff 

even though "elementary" in the technical sense. It was these examples 
that led Tierney and me to further generalize the previous theory of 

topoi in 1969 by making it elementary, since although y , £f
x
, ê are 

topoi in the Grothendieck-Giraud sense, the ff' of nonstandard analysis 
and the ff of forcing are not ; on the other hand, the essential issues of 
nonstandard analysis and of forcing can be dealt with in a perhaps more 
natural and certainly more invariant fashion in ff

x
, respectively $ , 
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provided one does not insist on constancy (which here just means on 
two-valuedness since the axiom of choice and hence the law of excluded 
middle are already valid in £f

x
 and ê if they are in Sf\ 

Variable sets arose only "incidentally" in nonstandard analysis and 
forcing. The original goal was to construct new models of the theory of 
constant sets bearing nontrivial relation to a given such model. By 
contrast, in Kripke semantics for the Heyting predicate calculus the variation 
is essential also in the end result. Indeed, the thrust of Kripke's completeness 
theorem is that no logic stronger than intuitionistic logic can be valid for 
sets that are varying in any serious way, and in the other direction the 
Heyting predicate calculus is valid in all topoi, although topoi are 
qualitatively more general in at least two ways than the models for that 
calculus considered by Kripke in 1963. The latter also involved a system of 
variable sets y

p
°

P
 identified with sets varying along a poset Ρ according 

to the second analysis of variation, but more simply than with forcing 
and Boolean-valued sets as described above. We only consider E(A) e ^ 
for AeP itself and the transition mapping E(B) E(A) in 5^ whenever 
A < Β in Ρ ; the transitions are subject to functoriality (transitivity), but 
to no further conditions, and the mappings Ex -• E2 in ^

P
°

P
 are defined as 

before. The interpretation of these variable sets was in terms of subjective 
variation of knowledge; the elements of Ρ are called stages of knowledge 
and A < Β is taken to mean that A is a deeper (or later) stage of knowledge 
than B; for any set Ε we have, at any given stage B, constructed 
certain elements of Ε and proved certain equalities between pairs of 
elements constructed, giving an abstract set E(B); if A < Β is a deeper stage 
of knowledge, the transition map E(B) -> E(A) reflects that no constructed 
elements are ever lost and no proven equations are ever disproved, but 
the map is neither surjective nor injective since new elements may be 
constructed and new equalities proved at stage A. Considering that an 
H-ary relation S on £ means simply another variable set equipped with a 
monomorphic mapping S^E

n
 in ^

p
° \ where E

n
 is the cartesian power 

in y
p
°

P
, one finds that the operation of substitution is easily defined and 

that the operations of conjunction, disjunction, implication, and universal 
and existential quantification on relations, which are uniquely defined by 
the rules of inference, exist in ^

p
° \ The crucial fact is that universal 

quantification and implication do not commute with evaluation at a stage, 
but rather 

Vx [5 x(x, y) => S2(x, y)] holds at B, where y e E(B) 
iff for'all A with A < Β and for all χ e E(A) 

if S x(x, y\A) then S2(x, y\A) 

so that such a relation's truth value at Β depends on its classical 
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truth value at all deeper stages. Since by definition ~l S = [S => false], a 
similar situation holds for logical negation, so that in particular S => Π Π S 
but not conversely. Though an infinite Ρ is required to simultaneously 
refute all intuitionistically nonprovable inferences of predicate calculus, the 
two-element poset 

p = { C / < X } = 2 

suffices to refute the inference from I IS to 5 ; moreover there is an 
immediate connection with geometry since for Ρ = 2 it is easily verified that 
5^

P
°

P
 is equivalent to the category of y - v a l u e d sheaves on a two-point 

topological space with three open sets. As in any topos there is a unique 
"se t" Ω of truth values in 5^

Ρ
°

Ρ
, which in the case Ρ = 2 is just the two-stage 

variable set 

Ω(Χ) • Ω(17) 

II II 

I false 1 j- false 
intermediate 

j true 1—rr^ja true j 

the intermediate value reflecting the fact that for an inclusion S>->E in 
y

2
°

P
, there may be elements of E(X) that are not in S(X) but that do get 

mapped into S(U) upon "restr ict ion" to E(U). Then (~l~l5)(A
r
) consists 

of all the elements of E(X) that on restriction are in S(U), so that 
S ^ ~I~IS is in general a proper inclusion. I would like to emphasize 
that recognizing the central importance for mathematics of the Heyting 
predicate calculus (i.e., intuitionistic logic) in no way depends on accepting 
a subjective idealist philosophy such as constructivism; objectively variable 
sets occur (at least implicitly) every day in geometry and physics and the 
fact that this variation is reflected in our minds in no way means that it is 
"freely created" by our minds; but it seems to have been the intuitionists 
who first succeeded in formulating the logic that holds for at least a certain 
definite portion of variation in general. 

Some idea of which portion may be conveyed by the following example. 
Suppose the variation is along the temporal ordering and consider the 
statement: 

The feudal landlords are the ruling class. 

Recalling that truth is preserved by the transition maps in the sense that 
once something is true, it remains true, we see that the above statement is 
not an acceptable relation 5 in such a hypothetical temporal topos since 
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it was once false, became true for a period, then became false again. On the 
other hand, consider the statement: 

The feudal landlords have ruled. 

Although this statement was sometimes true and sometimes false it has, 
solely by virtue of its grammatical structure, the requisite property that 
as soon as it became true, it remained forever true. Of course there are 
also more profound ways of dealing with temporal variation than simply 
identifying time with a poset that is governing the variation in the simple 
way we have suggested here, and some of these can even be accounted for 
by a suitable topos. 

In Kripke's topoi existential quantification and disjunction do commute 
with evaluation at stages: 

3x 5(x, y) is true at Β for y e E(B) iff there is χ in E(B) with 5(x, y). 

S^x) ν S2(x) is true at Β iff S^x) is true at Β or S2(x) is true at B. 

To put it more set-theoretically, images of mappings and unions of subsets 
commute with evaluation at B. But these facts apparently cannot be main-
tained in modeling Heyting-type theory (i.e., intuitionistic analysis) even 
though the Kripke topoi do have an intrinsic higher-order structure. At 
any rate, they certainly are false in the kind of topos that was already 
well understood in the 1950s, namely in a category of set-valued sheaves 
on a topological space. Such is also governed by a poset, namely the 
complete Heyting algebra of open sets of a space, but all the variable sets 
Ε satisfy the familiar "pas t ing" or sheaf condition, which is similar to but 
more involved than the infinite product condition for disjoint coverings 
mentioned above in connection with Boolean-valued sets. In particular, the 
image of a map between variable sets is also required to be a sheaf, which 
has the following effect. Suppose Εγ Λ E2 is a map of sheaves and 
y e E2(U) for some open set U in the space over which the sets are varying. 
Then the rules of inference force 

3x[f(x) = y] is true on U iff there exists an open 
covering l/ f of U and there exist xte £ f( l / f) such that 
f(xt) = y\Ut,ieI, 

where y\ V e E(V) denotes the restriction of y to V ç U. A similar statement 
holds for disjunction (union of two subsheaves) and these facts (with 
"covering" suitably interpreted) hold in any topos. 

Both the Kripke topoi and the topological topoi are generated by 
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their subsets of 1 in the sense that 

if S>->E is any monomorphism, then either it is an 
isomorphism or else there exists an object U for which 
U - • 1 is a monomorphism and there exists a morphism 
U Ε that does not factor through S (i.e., χ φ S). 

Examples of topoi of variable sets for which this condition does not hold 
were known implicitly for a long time and more explicitly in the 1950s in 
connection with group cohomology, in the form of the category FF

G
 of 

G-sets (permutation representations) for a group G. Here the only subsets 
U of 1 are 0 and 1, yet a map 1 A Ε is only an element of Ε that is 

fixed by G; or looking at it from the other side, the most natural 
object that is the source of enough elements χ (as U in the above 
condition) is G itself acting on itself by translation, yet (if G Φ 1) it is not a 
subset of 1. Now upon taking abelian-group-object categories, we have for 
a space X 

Ab(Sheaves(X, FF)) = abelian sheaves on X 

and for a group G 

Ab(<F
G
) = G-modules. 

Moreover, the functor represented by 1 [i.e., ST (I, )] becomes, for 

3C = Sheaves(X, y ) , the global sections functor 

Sheaves(X, IF) ± IF 

and, for 3C = IF
G
, the fixed point functor 

which upon taking Ab and taking right-derived functors via injective 
resolutions as in Cartan-Eilenberg, become respectively 

H
n
(ßC, E) = H

n
(X, £), and H

n
(&, E) = H

n
(G, E\ 

i.e., cohomology of a space with values in a sheaf and cohomology of a 
group with values in a G-module become cases of cohomology of a topos 
with values in an abelian object of the topos. 

[An important factor contributing to the nontriviality of cohomology 
is the nontrivial contradiction between 3 (image) and evaluation at X as 
mentioned previously. For example, in a Kripke topos in which there is 
a shallowest level of knowledge, H

n
 = 0 for n> 0. However, there are 

other factors, since without the shallowest level the H
N
(FF

Y
\ E) occur in 
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algebraic topology and in partial differential equations under the name of 
"higher inverse limits."] 

Note that if X and Y are any sober topological spaces (for example 
any Hausdorff spaces) then the topos morphisms (to be defined presently) 

Sheaves(X, <f) - Sheaves(y, 5?) 

are equivalent to the continuous maps X Y, and that if G and H are 
any groups, then the topos morphisms 

are equivalent to the group homomorphisms G - • H. Recalling that group 
cohomology arose in the geometric context where the group is related to 
the Poincaré fundamental group of a space, one sees the possible virtues 
of one big category Top in which spaces and groups are on "equa l " footing 
and in which moreover a space, its universal covering space, and its 
fundamental group might be connected by morphisms, etc. Such a conception 
occurred to many people but apparently was still not sufficient to give 
rise to the general concept of topos; it turns out that there is a large class 
of topoi, the so-called étendue discussed below, that includes both these 
classes of examples (spaces and groups) as well as much more, and yet the 
" typical" topos is of still quite another kind that also arose in algebraic 
geometry but turned out to have still other connections with logic, 
apparently in particular with A. Robinson's notion of "forcing in model 
theory." 

Some of these more typical examples arise immediately in algebraic 
geometry as follows. Let Κ be a field in 5^ and let A be the small 
category of all finitely presented (finitely generated) commutative algebras 
over K. The category ^

A
 of all covariant functors from A to £f is a topos 

with the following interesting property: the underlying set functor R: A - • £f 
is a commutative-K-algebra-object in 5 ^

A
; if 3C is any topos defined over 

£f and A is any commutative-K-algebra-object in 3C, then there is a unique 
continuous map (geometrical morphism of topoi) 

3Γ such that f*(R) — A. 

A continuous map of topoi is just a functor having a left exact adjoint 
/ * . Since tensor products in A distribute over finite cartesian products, 
the subcategory & of £f

K
 consisting of the functors that preserve finite 

cartesian products is also a topos, and R e the continuous maps 

of topoi are equivalent to the commutative-K-algebra-objects A which 
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satisfy moreover the condition 

a
2
 = a ( entails a = 0 ν a — 1 

where the disjunction is interpreted as union of certain subobjects of A 
in The topos

 r
S may also be described as the largest subtopos of 

for which the left adjoint to the inclusion functor renders isomorphic 
the particular inclusion map 

{0, 1} <+A{K x K, _ ) 

in y
A

. In turn & has a largest subtopos £ for which the inclusion 

l / u Ul_()̂ R 

is rendered isomorphic, where for a Β e A, 

(U u I V o P ) = {fc g B|3(l/fe) or 3[1/(1 - b)]}. 

The topos J^, sometimes called the "big Zariski" topos, classifies, for 
any topos over f/\ the commutative-X-algebra-objects A in 3' that are 
local rings in ,F in the sense that al + a2 unit in ,4 entails 

where again disjunction refers to union of subobjects (of A χ A) in d\ 
These examples represent a surprising twist of a logic that is not yet 

fully clarified: while a topos such as Sheaves(X, / / ) for a topological 
space X may be "identified" as a particular space, a topos such as ^ o r £ 
should be identified rather as a general concept of space in the sense 
that its objects correspond to particular spaces as follows: The Yoneda 
embedding, which factors through may be called "spec," since its image 
is equivalent to the category of affine algebraic schemes over Κ 

but in fact the whole category of algebraic spaces over Κ is fully included 
in J?. For X e the morphism set

 (
S{X, R) is the ring of functions on 

the space X, and the definition of Ή may be considered as the readjustment 
of the notion of coproduct (from that of FF

K
) so that spec(Bj χ B2) = 

s p e c ^ ) + spec(ß 2) . The latter condition is geometrically reasonable since 

holds in any case for the rings of functions, and if X\ , X2 are determined 

(a{ unit in Α) ν (a2 unit in A) 

f
S(Xx + X 2 , R) ^ <S(XV R) χ V(X2, R) 



VARIABLE QUANTITIES A N D VARIABLE STRUCTURES IN TOPOI 111 

by their global function rings Bv B2, it is plausible that the "disjoint" 
union Xx + X2 is entirely determined by its global function ring as well. 
Similarly, the definition of 3T is a further readjustment of unions so that 
finite coverings of X = spec Β by Zariski open subobjects (not only the 
clopen coverings determined by idempotents) have the correct effect on 
function rings. Here all Zariski open subobjects are derived from pullback 
from the basic one 

U c > R 

A(K[t9r*l_)^A(K[tl_) 

The above examples are typical in that EVERY Grothendieck-Giraud 
topos ®J over SF is the classifying topos for an essentially unique theory in 
the way that SF

K
 is the classifying topos for the theory of commutative 

algebras, <S the classifying topos for the theory of idempotentless algebras, 
and 3( the classifying topos for the theory of local algebras. That is, for 
any topos ί¥ over SF, the category T o p ^ ( # \ <&) is equivalent to the 
category of models in 3C of the theory associated with °Y. The kind of 
theories that occur, which we may briefly call "posi t ive" theories, are in 
general many-sorted ones, which in addition to equational axioms (such as 
the distributive law) may also involve axioms of the form 

Φι 
entails φ2, 

where the φχ and φ2 are formulas built up from " a t o m i c " operations 
and relations using finite conjunction, possibly infinitary disjunction, and 
existential quantification. If only unitary disjunctions (which includes the 
empty disjunction "false") are involved, the topos will be a "coheren t" one, 
and conversely. So far as models in 3C = SF are concerned (or more 
generally for any "Boolean" 3C in which classical logic reigns) any first-
order theory can be construed as positive by introducing further atomic 
relations to play the role of any negative formulas that occur in the 
axioms. In this sense Deligne's theorem that every coherent topos has 
points is equivalent to the Gödel -Henkin completeness theorem for first-
order logic and Barr's theorem that every Grothendieck-Giraud topos has 
sufficient Boolean-valued points implies Mansfield's Boolean-valued com-
pleteness theorem for infinitary first-order theories. However, as already 
pointed out, classical logic does not apply in even the simplest topological 
topoi Ά \ so that if conditions φ that essentially involve V , => are 
considered, Kripke's method has to be taken into account. 

As a simple example of the above, let G be a group in SF and = SF
G 
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the category of all G-sets. It is known that for any topos SC over if 

Top^OT, if
G
) = H\Sf, G) 

up to equivalence, i.e., that continuous maps SC -• if
G
 correspond to 

principal homogeneous G-objects in SC. The latter are in fact models of 
the positive theory generated by one unary operation for each element 

of G subject to the axioms 

{9i9i)
x
 = 9Α92

 X ) 
9I

X
 = 9i

x
 entails "false", for gx Φ g2 (an infinite num-

ber of axioms with one free variable) 

V \.9
X =

 y] (
a
 fc>

rm
ula with two free variables) 

geG 

3x[x = x] 

The last axiom means that for a principal homogeneous G-object X in SC, 
the morphism X -> 1 is an epimorphism in SC; it does not necessarily 
mean that X has a globally defined element 1 - • X in SC, which would 
imply X ^ P*(GX) where SC if is the canonical grounding or "global-
sections" functor and G x denotes G acting on itself by left translation. 

Another example of central importance is the classifying topos for the 
theory of equality, i.e., the models of this theory in SC are just the objects 
of*", 

Top^(iT, 9) ^ SC for all SC. 

Here 

is the category of all functors from the category of finite sets into the 
category of sets, with the inclusion functor U as the "generic set adjoined 
to if Γ [If we instead consider if^ we get the classifying topos for the 
theory of Boolean algebras, with n~~>2

n
 as the "generic Boolean algebra."] 

Taking SC = if, we see that the category of points of y
S f in

 is just if, so 
that in a definite sense the objects of any Grothendieck-Giraud topos SC 
may be identified with continuous mappings 

SC -> y
S f

-

from the "space" SC into the "space of all sets." There is a clear 
analogy here, to which we will return in a moment, between variable sets 
and variable quantities: If we replace ifSfin

 by the space of real or 
complex numbers, we would obtain the well-known correspondence 
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between algebras of variable quantities and spaces; however, that cor-
respondence is perfect only for compact spaces, while for "a lgebras" (topoi) 
of variable sets the correspondence is perfect for all sober spaces and even, 
as we have seen, for vastly more general "spaces" as domains of variation 
for the variable sets. Such a " space" may be considered as the space of 
models for a theory, in a more refined sense than the usual one since a point 
determines a model, not only an elementary-equivalence class of models. 
It is useful to consider that the analysis of the domain of variation is a 
categorical refinement of the analysis in terms of parts, in the sense that 
any object of the topos may also be considered a generalized " p a r t " of 
the domain of variation. Under the analogy the functors / * , which are just 
those preserving small direct limits (addition) and finite inverse limits 
(multiplication), correspond to algebra homomorphisms. 

We can even speak of ideal points of a topos in the following way. 
Any given infinitary theory can be construed as a finitary theory in which 
all formulas obtained by infinitary disjunction are reconsidered to be 
" a t o m i c " formulas; in topological terms we relax the sheaf condition to 
consider only finite coverings. This leads to a sort of Wallman compacti-
fication 

SC^ W 

for any G-G topos SC (with SC a coherent topos), and we may consider 
any point ^ Λ SC of SC to be an ideal point of SC. The axiom of choice for 

(i.e., the Del igne-Gödel-Henkin theorem) reassures us that enough 
ideal points exist for any SC. The above inclusion has the special properties 
that it generates W in the sense that any X in 9C is the canonical 
direct limit of all the objects X in SC that map in SC to X, and 
that the inclusion preserves finite direct limits (i.e., its derived functors 
vanish). Thus for any ideal point ρ of SC, the composite SC

C
—>W——•y 

is a functor that preserves both finite inverse limits and finite direct 
limits; factoring this functor by a method due to Kock and Mikkelsen 
should lead to a "localizat ion" functor SC-*&", which preserves even 
higher-order logic, with ¥ ' a two-valued topos but, in general, not a 
Grothendieck-Giraud topos (i.e., not defined over y ) , making precise the 
idea that constancy is a limiting case of variation, but constancy is not 
an entirely determinate concept. 

We need not always use the syntactical machinery of logic in presenting 
the classifying topoi ®J, since as has been elegantly utilized by Joyal and 
Wraith, every Grothendieck-Giraud topos over °y^ = ^ can be constructed 
by a finite number of applications of the following three operations: 

(1) Adjoining a generic element of a given object Y0 of a given topos 
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oy: (jy
1
 = $//Y0 = (the category whose morphisms are the commutative 

triangles in SM ending in Y0) has the property that for any given continuous 

map SC -4 ty, 

Top^(fr, <sr)gzär(i P*Y0). 

Here, if we denote by Π : W the continuous map \\γο whose inverse 
image part is just Π* = ( ) χ Y0, the "generic element of 7 0" is just the 
element in Ψ 

\w -> Π*(7 0) 

determined by the diagonal map. 
(2) Adjoining a generic family of objects indexed by a given object / 

of a given topos ®f. That is, there is a topos
 J

3/" with a continuous map 
(
&" ®f such that for any topos SC and given continuous map SC -4 W, 

T o p * ( # \ <sr) ^ ar/p*{i) 

and of course for J e SC we consider SC /J as the topos of families of objects 
of SC smoothly parametrized by J. In case 7 = 1 , •& = ff we have 
jy» _ cfSVm as discussed earlier. 

(3) Inverting a given morphism Y1 Λ Y2 in a given topos ^ . There 
is a subtopos ^ (constructed with help of a Grothendieck modal 
operator in °U) such that for any continuous SC -A ^ , 

ρ factors through iff p*(y) is an isomorphism in SC. 

These constructions imply some others: 

(4) Adjoining a generic morphism between two given objects YV Y2 in 
a given topos W. There is ^

I V
 - • & such that for any continuous 

sr^<&9 

Top #(ir, ^
I V

) ^ ^ ( p * y 1? p*y 2) . 

(5) Adjoining a generic ep/morphism between two given objects [by 
applying (3) to the image of a generic morphism]. 

(6) Imposing equality of two given morphisms YX =t Y2 [by applying (3) 
to the inclusion morphism of their equalizer], etc. 

In the above we have denoted by T o p # ( # \ °U) the category whose 
objects are pairs -4

 ύ
Μ, 0>, where 0 is an isomorphism of functors. 



V A R I A B L E Q U A N T I T I E S A N D V A R I A B L E S T R U C T U R E S I N T O P O I 115 

In the constructions (1) and (4) this category of continuous maps is 
equivalent to the small discrete category determined by the set of morphisms 
on the right-hand side of the condition, while in case (2) it is equivalent 
to the " la rge" (and nondiscrete) topos SCjp*l. 

For example, we may consider the functor N:San-^6f which is 
constantly a countable set; it is the natural number object for the object 
classifier

 (
Wl = y

S f in
 in the sense that is uniquely described as the object 

satisfying primitive recursion. Thus by (1) the category y
S f i n

/ J V has both 
a generic number η and a generic " se t " U. The "se t " of natural 
numbers less than η is a definite object [n] of the last category, so by (5) 
we can further adjoin a generic epimorphism [n] -• U to obtain the classify-
ing topos °y2 for the theory of explicitly finite sets, i.e., for any 
SC y , an object of the category 

" i s " a triple (A, k, r>, where A is an object in 3C, k a natural number 
in r/ie sense of 9£, and r: [k] -» A an epimorphism in 9C. It is easily shown 
that the canonical map

 (
3/2̂ *

<
W1 has q* faithful, so that the image of q in 

the sense of T o p ^ is x itself. But what of finite sets in themselves, i.e., 
those objects for which "there exists" an enumeration by some natural 
number? 

For example, in the two-stage Kripke topos y
2
°

P
 (i.e., the topos of 

sheaves on the two-point space with three open sets), there is no need 
for coverings in interpreting "there exists," so a finite object turns out to 
mean E(X) E(U) such that both E(X) and E(U) are finite in the sense 
of 5^ and the restriction map E(X) E(U) itself is surjective. Note that a 
natural number [k] in y

2
°

P
 must have identity [k] -• [k] as its restriction, 

so that the existence of an enumeration for Ε by some [k] does not imply 
that Ε has a one-to-one enumeration by a [k] (not even locally). 

On the other hand if we consider A = {z\\z \ = 1}, the unit circle in 
the complex plane, as a locally connected Hausdorff topological space, 
then in 3C = Sheaves(X, y ) coverings definitely do play a role; the natural 
number [2] is the sheaf corresponding to the étale space X + X X over 
X consisting of two disjoint copies of the circle, one above the other, but if 
we consider the étale space X —> X (which may be pictured as a single 
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double loop) then the corresponding sheaf Ε is locally enumerated by 
(even locally isomorphic to) [2] and hence is finite. 

As a third example consider 3C = y
G

, the topos of G-sets. Here a natural 
number [k] is a finite set with trivial G-action, but since there is a 
"covering" on which y

G
 becomes equivalent to if itself, a finite object 

is just an arbitrary finite G-set. 
Our definition of finite is equivalent to the following definition, 

independent of the concept of natural number, which was studied by 
Kock, Lecouturier, and Mikkelsen. Ε is finite iff it is a member of the 
smallest subset of the power set of £, which contains 0 and all singletons, 
and is closed with respect to binary unions. If 9C -> W is any continuous 
map and Y is finite in W, then f*Y is finite in 3C, a property that is 
manifest for our definition but in fact also valid without the existence of 
an object Ν of all natural numbers in &. Thus taking the category 3F(3C) 
of finite objects is a contravariant category-valued 2-functor of the topos 3C. 

Just as the enlargement 

A
o p

 Ç & ç if
K 

of the category of affine schemes was necessary because there are algebraic 
spaces (notably Grassman manifolds) that are not determined by a single 
global ring of variable quantities, so a hypothetical enlargement 

T o p ^ c / ç CAT
T
°P°

P 

of the 2-category of Grothendieck-Giraud topoi may be necessary to 
account for very general domains of variation that are not determined 
by a single global topos of variable sets. From the above discussion of 
finiteness, we derive the following hypothetical property of J f : A map 

is "ep ic" in Jf if for every 3C e Topy and for every Es3F[ßC) 
there exist an y - s e t 5, of objects of 3C with Σ, S, 1 epic and 
E{ e with 

ί ( ϊ ι ) = Π , * ( £ ) in *(JT/St) 

It is not clear what the "logic," i.e., the structure of subobject lattices, 
for a "2-dimensional topos" such as Jf should be. Note that the lattice of 
subtopoi of a given topos is actually an ann-Heyting algebra; i.e., it is like 
the system of closed subsets (rather than open subsets) of a topological 
space. Thus rather than an implication operator right adjoint to conjunction, 
the lattice of subtopoi has a logical subtraction operator left adjoint to 
disjunction, so that if we define ~Ί.ο/ for a subtopos s/ to mean 1\.<?/ where 
1 denotes the whole topos, then it may be useful to consider, by analogy 
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with closed subsets of a space, that 

ês/ = s/ Λ 

is the " b o u n d a r y " through which sé and ~\stf pass over into each other. 
The ubiquity of variable sets suggests the following modest but rather 

definite conceptual guide: Endeavor to do calculations in all branches of 
mathematics in such a way that insofar as possible they will be valid in an 
arbitrary topos, not only in " t h e " category of constant sets, for this in many 
cases proves to permit a direct application of essentially naive set-theoretic 
techniques to higher mathematical problems in a new way that was not 
possible before the work of Grothendieck, Giraud, et ai 

To pursue further the analogy with quantities, recall that many con-
structions that are possible for constant quantities, such as the exponential 
function e

x

9 remain meaningful and useful in any Banach algebra; similarly 
many constructions, notably the power set ^(X) = that are possible 
for constant sets remain meaningful and useful in any topos. [Caution: &(X\ 
unlike e

x
, does not commute with evaluation at a point in general.] Partly 

independently of the fact that any commutative ring can be analyzed as 
consisting of local-ring-valued functions on its spectrum, it is important for 
many reasons to develop linear algebra (and hence quadratic forms, 
commutative algebra, Lie algebra, etc.) over an arbitrary commutative base 
ring. Such a development, of course, has more at tendant subtleties (some 
of which are measured by homology) than the case when the base ring is 
the field of rational numbers or complex numbers. In a similar way, it is 
useful to develop mathematics over an arbitrary base topos, and this partly 
independently of the analysis of its objects as constant-set-valued con-
tinuous maps on some domain of variation. 

Naturally there is not only an analogy but also an inclusion: Just as 
a system of constant quantities constitutes a (structured) constant set, so a 
system of variable quantities constitutes a (structured) variable set, usually 
with the same domain of variation. For example, if the usual construction 
of the complex numbers from the natural numbers is carried out in the 
topos of sheaves on a space, what results is just the sheaf of germs of 
continuous complex-valued functions on the same space. Here the " u s u a l " 
construction is understood to involve defining the reals as two-sided 
Dedekind cuts in the rationals; one of the at tendant subtleties is that one-
sided Dedekind cuts constitute the sheaf of germs of semicontinuous real 
valued functions, which is in fact the natural recipient of the distance 
function for variable metric spaces and even of the norm for many 
variable C*-algebras. Cauchy sequences in the rationals lead only to locally 
constant real-valued functions on the space. 

As an example of the kind of "new direct set-theoretic approach" to 
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a problem that is possible, consider a given continuous map E^X of 
topological spaces (which may be considered as a family of spaces Ex 

smoothly parametrized by x G X). If the topos SC = Sheaves(X, Cf) is con-
sidered as the base "set theory," then as is fairly well understood Ε is just 
"one discrete set" in SC if the map is étale. But what if the map is 
arbitrary? In any "set theory" we can, with due care (geometrically 
motivated) to the at tendant subtleties of intuitionistic logic, develop general 
topology, sheaf theory, etc.; then (again modulo some subtleties) the induced 
continuous map 

S^SC 

on sheaf categories is equivalent to the global sections functor for the 
category SheavesX(E*, SC) for a single topological space E* in the set theory 
SC, with Ε

φ
 in general not (even internally) discrete. 

2. 

The reader may have wondered why I mentioned my axiomatization 
of the category of constant sets as one of five developments leading to the 
consolidation of the concept of variable set. The reason is that in the 
development of my own thinking and in that of some of my colleagues, 
it was necessary to first purify the constant sets of an extraneous mental 
variation (along ordinals with at tendant proliferation of iterated member-
ship chains), which had been reflected in the theory of them and which is 
of quite a different nature from the more seriously mathematical or physical 
variation discussed in Section 1, in order to reveal them more starkly for 
what they are as well as to bring their theory closer to a reflection of 
actual mathematical practice. (The last was uppermost in my mind when 
I developed the theory ETCS for an undergraduate course in the foundations 
of analysis at Reed College.) Moreover, so far only the category language 
has successfully acted as a basis of unity for people who are trying to get 
clear on the general workings of variable sets (although elegant theories 
in the membership language have been given for the special case of topoi 
that can be generated by their truth values [subsets of 1]) and ETCS seems 
to have been the first categorical set theory. 

There can be no doubt that in mathematical practice both sets and 
their membership as well as mappings and their composition play basic 
roles. But in setting up a formal theory one should also try to get clear 
on which of these is primary and which is secondary in mathematical 
practice. 

The traditional view that membership is primary leads to a mysterious 
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absolute distinction between χ and {x}, to agonizing over whether or not 
the rational numbers are literally contained in the real numbers, to the 
"discovery" that an ordered pair of elements in turn has elements which 
are, however, not the original elements, and to debates over whether the 
members of the natural number 5 are 0, 1, 3, 4 or not, and all that is 
clearly just getting started; on its own formal face, a membership-based 
theory of sets is potentially littered with an infinite number of such formulas 
that even set theorists refrain from writing down due to their good mathe-
matical sense. This situation, along with a very analogous situation with 
respect to the standard formalization of predicate logic, has led to the 
widespread view that a formalized theory and the calculations that it tries 
to unify are necessarily so sharply divorced from each other that only a 
pedant would at tempt to actually use a formalized set theory, which view 
only helps to isolate from most people the actual advances set theorists 
and logicians have made. 

Rejecting this pessimistic view, we may try to isolate instead the features 
of membership-as-primary that lead to nonmathematical set-theoretic 
"ques t ions" of the kind listed. I believe the conclusion is that membership-
as-primary entails membership as global and absolute whereas in practice 
membership is local and relative; that is, in practice we only consider 
membership as a relation between elements of a given set and subsets of 
the same given set, not between two sets given in vacuo, and the meaning 
of membership may vary or not vary when we transform the element 
and the subset according to some mapping that is, for the given context, 
tautological. 

These considerations lead one to formulate the following "purified" 
concept of (constant) abstract set as the one actually used in naive set-
theoretic practice of modern mathematics: An abstract set X has elements 
each of which has no internal structure whatsoever; X has no internal 
structure except for equality and inequality of pairs of elements, and 
has no external properties save its cardinality; still an abstract set is 
more refined (less abstract) than a cardinal number in that it does 
have elements while a cardinal number does not. The latter feature makes 
it possible for abstract sets to support the external relations known as 
mappings, which constitute the second fundamental concept of naive set 
theory (cardinal numbers would admit only the less refined external 
relations expressed by one being less than another or not). Thus " m a p p i n g " 
is too fundamental to be formally "defined," although we remark that a 
mapping satisfies thp familiar V x 3 ! y condition (and prove later that a 
mapping X -> Y may be represented by its "graph," which is a subobject 
of a cartesian product Χ χ Y as well as by its "cograph," which is a 
quotient object of the (disjoint) sum X + Y). The third concept is that of 
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composition of mappings, which is defined only in case the codomain of 
the first mapping is the same abstract set as the domain of the second 
mapping (indeed otherwise the abstractness of the sets would be violated). 
Of course composition is associative, and there is an identity mapping for 
each set. Thus we have " t h e " category <9

?
 of abstract sets and may speak 

of isomorphisms, monomorphisms, etc. It has been found possible and 
effective to express all structure of mathematical interest on a set (or sets) 
by means of given mappings. 

By a "subset" we mean not a set but any monomorphic mapping, i.e., 
a mapping that does not permit the definition of any structure on its 
domain. If in the category ,97 Y of sets "over" a given set Y we restrict 
attention to the subsets of X we find that there is at most one morphism 
of tfjY between any pair of them, defining a reflexive and transitive 
relation ^ y among the subsets of Y; thus an inclusion is something simpler 
and more precise than a condition such as \/y[y e Sl=>ye S2] since it is 
rather a single actual mapping that respects the two subsets, although its 
existence will imply such a condition in view of the following definition of 
membership. 

Suppose 7 - » Y is any mapping and S>->Y a subset. By abuse of 
notation the letter S names the subset, not only its domain. Then we define 

ye S 

to mean that there exists a mapping (unique by the definition of mono-
morphism) rendering commutative the following diagram 

Τ - > S 

\ 
Y 

By axioms for set theory we simply mean certain properties that mathe-
matical experience has shown to be true of sets and mappings and that are 
judiciously chosen so that together the axioms will imply all other properties 
that mathematical experience shows to be true. A fundamental axiom is the 
existence of one-element sets, denoted ambiguously by 1 and characterized 
by the property that the obvious functor 

is an isomorphism of categories. We call a mapping l - > 7 a global (or 
eternal) element of Y, but sometimes refer to an arbitrary Γ —• Y as "an 
element of Y defined over T." 

The only possible use of abstract sets Τ is the possibility of indexing 
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or parametrizing things by the elements of Τ in the hope of clarifying 
actual relations between the things by means of calculations on mappings 
introduced to mirror the relations, and the axioms of set theory are based 
on the need to have abstract sets capable of parametrizing or perfectly 
parametrizing mathematical " th ings" that have arisen in the course of the 
mathematical practice of clarifying actual things and their relationships. 
For example, the elements of a set Y are mathematical " th ings" and it is 
precisely the mappings Τ -+ Y that may be used to parametrize these things 
by the elements of Γ ; in this case perfect parametrization is possible by 
choosing Τ = Y and the identity mapping. 

A second kind of " th ing" that we immediately need to parametrize 
by Τ is the (abstract) sets themselves; this can be accomplished by con-
sidering mappings £ - • Γ and their fibres as can be made precise with 
the help of additional axioms discussed below. While some such parametriza-
tions may be half-perfect in the sense that Εΐχ̂  Et2=>tl = t2, no fixed Τ 
however large can parametrize all sets, even up to isomorphism. A question 
that has been of much "foundat ional" interest, though of hardly any 
significance for the practice of algebra, topology, functional analysis, etc., is 
whether, for a given T, all imaginable families of sets parametrized by Τ 
can be represented by Ε -• Τ for some Ε and some mapping; if " imaginable" 
is interpreted to mean "definable," an affirmative answer to this question 
is essentially equivalent (for abstract, constant sets) to the postulation of the 
so-called "replacement schema," whereas if if is considered as an object 
in some larger realm, an affirmative answer means that if itself has 
"inaccessible cardinality." However, in view of practice and in view of the 
role of if as a limiting case of the general notion of continuously variable 
sets, it seems appropriate to simply define "an in te rna l - to -^ T-parametrized 
family of objects of if" to mean just a morphism of if with codomain T. 

The problem of perfectly parametrizing ordered pairs of elements is 
solved by the axiom of cartesian products 

Τ °
1,>2>

> Υγ χ Υ2 

Τ • 7,, Τ • Υ2 

where projection and diagonal mappings aid in effecting the perfect 
parametrization and where general elements defined over arbitrary Τ are 
needed for a generally effective characterization. Note that in itself Yx χ Y2 

is just as abstract as any other set; but it has the correct cardinality and 
the given projection mappings enable it to be considered as having a 
"rectangular" structure so that its elements can be named in the usual 
way with help of elements of Yv Y2 . An important role of cartesian products 
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is to allow consideration of algebraic operations on the elements of Y as 
mappings Υ χ Y Y. 

The immediate consideration of topoi of more variable sets is helpful 
even in clarifying constant sets. For example, the functor 

,9 TX( ]
 > .9'/Τ 

enables interpretation of a (relatively) constant set as a particular case of a 
"set varying over T " (that is, a family of sets parametrized by T) and in 
particular, identification of an element of Y defined over Τ in ,9' with a 
global element of Y defined over 1 T in ,9IT 

Given X ==î Y inducing a structure on X, the elements Τ -+ X for 

which fxx = f2x can be parametrized by the domain of the equalizer £, 

which is a subset of X satisfying 

xeE iff fxx=f2x. 

In terms of 1, x , and equalizers, various constructions such as pullbacks, 
graphs, intersections of subsets, inverse image of a subset along a mapping, 
etc. can be carried out and related to each other. In particular, if Ε -• Τ 
is considered as a family of objects parametrized by Τ then the "individual" 
objects in the family can be extracted by means of pullbacks 

Et • Ε 

Γ • Τ 

(in particular, consider the case Τ = 1). 
While mappings in themselves are not elements of any abstract set (they 

have, after all, "internal structure"), the mappings between two given 
abstract sets can be perfectly parametrized by a set of suitable cardinality 
with the help of an evaluation mapping. Leaving perfection aside for a 
moment, note that any mapping 

Τ χ Χ Λ y 

may be identified with a parametrized family of mappings X X since for 
any given 1 ^ 7 we may define et by 

x - • y 

τ χ χ 
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where tx is the constant composite X - • 1 -+ T. Then the "exponent ia l" set 
Y

x
, which is the right size to parametrize perfectly all the mappings X X 

is characterized by transformation rule 

T-+Y
x 

Tx y 

with the evaluation Y
x
 χ X ^ Y corresponding to the case Τ = Y

x
 with 

the identity mapping above the line. A usual slogan for interpreting the 
above transformation rule (often given the mysterious name "A-conversion") 
says " a function of two variables is equivalent to a function-valued 
function of one of the variables," although of course the " n a m e " \->Y

x 

of a mapping X -• Y is not " e q u a l " to the latter but is just as abstract as 
any element of any set in Sf. An important use of the operation Y

x
 is 

to permit consideration as mappings of funct ional Y
x
 Ζ and operators 

Y
x
 ->B

A
; in particular, composition of mappings can itself be studied 

locally (i.e., for given A, B, C) as a single mapping 

B
A
 χ C

B
^C

A
. 

To emphasize the basic nature of the exponentiation functor, let us 
consider the problem of representing the mechanical motion of matter and 
calculating: the distance of a particle from a fixed reference point at any 
given time, the motion of the center of mass of a body, and the velocity 
of a particle at any time. To this end, suppose M parametrizes particles 
in a material body (solid or fluid), Ε parametrizes points of space, Τ instants 
of time, and R the positive quantities. Distance may then be represented 
by a mapping Ε χ £ Κ, which in particular gives Ε a convexity structure. 
The object E

M
 then parametrizes all possible (and possibly some impossible) 

placements of the body in space, and one of the consequences (usually 
calculated with the help of the theory of integration of the mass distribution 
intrinsic to the body) is a functional 

E
M
 Ε 

called the center of mass. If the motion of the body is represented by a 
mapping expressing the placement of the body at each time 

then this is useful (even necessary) to compute the position of the center 
of mass at any time by composing the two mappings. However, suppose 
1 Ε is a fixed point and we want to calculate the distance from ρ to any 
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particle at any time; then we must use the exponential transformation rule 
to express the same motion instead as a mapping 

Τ χ M -> £, 

which we can then compose with Ε —R to find the mapping Τ χ M R 
to be calculated. But now note that since Τ χ Μ ^ Μ χ Τ the same 
motion can also be expressed as a mapping 

M - £
r 

assigning to each particle the path it follows; indeed the motion must be so 
expressed if we are to be able to compose it with the differentiation operator 

E
T
 V\ 

where V is the vector space of translations of £, in order to be able to 
transform back and thus compute 

Μ χ Γ -> Κ 

the mapping expressing the velocity of any particle in the body at any time. 
I have discussed this example in some detail to emphasize the elementary 
character of the exponential adjointness, its necessity for science, the fact 
that it retains the same form for topoi other than abstract sets in which 
all mappings are smooth (or even more general categories), and that it must 
be retained in some fashion even when we consider objects that do not 
consist mainly of points. 

Other crucial facts that follow from the existence of exponentiation, 
although they do not mention it, are distributive laws like 

Τ χ (X, + X2) Α Τ χ X, + Τ χ X2 

when "coproducts" (i.e., "disjoint" sums) exist, as they do in topoi. More 
general laws (involving pullback instead of only the special case χ ) follow 
similarly from the fact (additional axiom if you wish) that the pullback 
functors 

/ / y r < - y y r 

determined by any T' -> Τ have right adjoints J~[f, which fact is equivalent 
to the fact that each category FFJT of T-parametrized families of sets has 
its own internal exponentiation satisfying the same transformation rule over 
Τ as the one already written for the case 7 = 1 . 

The other main use of abstract sets is to parametrize perfectly various 
types of quantity, notably positive real quantities (by R, as mentioned but 
not fully characterized above), and in particular matter, space, time, and 



VARIABLE QUANTITIES A N D VARIABLE STRUCTURES IN TOPOI 125 

the more problematical truth values (denoted by Ω in a general topos and 
by 2 in the case of abstract sets). We also customarily use an abstract set Ν 
to "perfectly" parametrize the finite discrete quantities. Claiming that the 
latter can be parametrized by an object Ν does not make it less problematical, 
since while we see (bounded pieces of) R every day, no one has yet completed 
a potential infinity like N. Indeed the introduction of Ν has given rise to 
all sorts of unphysical "counter examples" in analysis in the past 100 years. 
In this latter connection, I may remark that Professor Eilenberg's beautiful 
lecture on the utter simplicity of the machine needed to compute approxima-
tions to a space-filling curve need not convince one that the machine will 
find enough paper to complete its calculations nor that such a curve exists, 
since it may rather serve to clarify doubts that Ν exists (as opposed to 
0, 1, 2, each of which does of course exist). One of the reasons for 
referring to the quantity-type Ω as problematical is that in conjunction with 
reasonable properties of R it implies the existence of N. 

The characterizing property of the set Ω, which perfectly parametrizes 
the truth values of a topos JT\ is that there is a distinguished eternal truth 
value 1

 l r u
' > Ω, the inverse image {Χ\φ} of which along any Χ Α Ω is of 

course a subset of X for which 

χ 6 {Χ I φ} iff φχ = t r u e 7, for any T A X , 

but which moreover is such that any subset of any X is of this form for a 
unique φ. This implies that Ω is a Heyting-algebra in âf, i.e., there is 

Ω χ Ω ^ Ω 

such that for α, φ, ψ: Χ - • Ω 

{Χ\φ}^{Χ\α=>φ} iff {Χ\φ} η {Χ|α} <Ξ {Χ\ψ}, 

where the intersection and inclusions are as subsets of X. Still simpler is 
the mapping 

Ω χ Ω Α Ω 

representing intersection, which is simply the "characteristic function," in 
the sense of the above axiom, of the subset 

The object P(Y) = Ω* perfectly parametrizes the subsets of Y in the sense 
that the 

Τ - Ω
ν 
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transform biuniquely into relations from Γ to y (i.e., into arbitrary subsets 
of Τ x y) . Indeed the foregoing sentence together with pullbacks implies 
the existence of Y[, + , etc., and so could be taken as the most economical 
axiom system for topoi (without mention yet the other quantity-types R, JV, 
etc.). In particular, there are for each X mappings 

P(Y) x y ^ Q 

that "locally" at Y express fully as a mapping the relation of membership 
between any subset of Y and any element of Y Moreover, it follows that 
existential and universal quantification can themselves be expressed as map-
pings, e.g., by Yx-^UnY

 and by PPY PY 

The "simple recursion" property sufficient to characterize in a topos Sf 
a completed discrete infinity Ν with successor 5 and starting point 0 is 
simply the universal mapping property 

i.e., on any set Y any simple transition t and any starting point y0 

determine a unique sequence Ν -+ Τ satisfying two simple recursion 

conditions. This implies for a topos Sf that the forgetful functor 

M o n ( y ) - • Sf 

from the category of all monoids in Sf has a left adjoint W, which is the 
"word algebra" functor with W(l) = N, and a monoid homomorphism 
" length" W(T)-*N for any set Τ in Sf. An even stronger consequence 
(i.e., not equivalent in the absence of the exponention axiom true in a topos 
Sf) is that for each T, the forgetful functor 

Sf
m
 -> Sf 

has a left adjoint that may in fact be written W(T) χ Z< Z. Here Sf
{T) 

denotes the category whose objects are pairs Υ, θ where Γ χ Y -• Y is an 
arbitrary ^ - m a p p i n g ; this category will itself be a topos provided Sf is a 
topos and Ν exists in if. The adjointness expresses the expected recursion 
property for "generalized ar i thmetic" with a family Τ of "successors" and 
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a family Ζ of "zeros." As mentioned in Section 1, a striking consequence 
of having Ν in a topos ff is the existence of a topos ff[U] defined over ff 
such that for any topos SC defined over ff (i.e., equipped with a continuous 
map SC -> ff) there is an equivalence 

Top^(;r, ff[U]) ^ SC 

of categories. It is not known at present whether, conversely, the existence 
of such an "object-classifying" topos over ff implies the existence of a 
natural-number parametrizer Ν in ff. 

So far we have in fact stated only axioms that in the metatheory need 
only the extremely weak " logic" of Descartes' analytic geometry, i.e., 
considering the mappings in ff as the elements of the "universe" of discourse, 
we have not needed anything so powerful as so-called standard logic with 
its operators =>, V , 3, ν , but rather we have expressed all the axioms only 
in terms of ordered pairs (triplets, etc.) of mappings subject to certain given 
functional operators defined on certain equationally defined "variet ies" in 
ff

1
, ff*, etc. using in principle only substitution; yet we have expressed all 

the axioms (with the exception of functor "associated champ," which 
probably should be added) for the general theory of variable sets. This is 
possible chiefly because all the axioms have the form of "adjointness" 
except for the most tautological ones, which are purely equational (always 
understanding that "equa t iona l" means identities hold on certain equation-
ally defined "subvarieties"). However, in order to express the two further 
axioms that in the main express how the notion of constant set contrasts 
with the general notion of variable set, we need to introduce into the 
metatheory the logical operators "there exists" and " o r " in an essential way 
(I may have used these words before in this section, but always, I believe 
in ways that can be easily eliminated by standard methods). However, it 
may prove important to remark that we still do not use the operators V and 
=> in any essential way, so that the resulting theory [equivalent to the 
elementary theory of the category of (constant) sets] is still a positive theory 
in the sense of Section 1, so that the full method of classifying topoi (i.e., 
generalized "spaces" of models) can in principle still be applied to this 
metatheory just as for, say, the theory of local rings. The two further axioms 
are in fact just statements claiming a close unity between the external 
operators "there exist" and " o r " introduced into the set theory (they are 
written explicitly on the first page of every traditional book of formal set 
theory) on the one hand, and the internal operators 3 and ν that exist as 
mappings in any topos ff. Explicitly, these axioms are the axiom of choice 
and two-valuedness : 

(AC) For any X Y, if l y ç 3^(1^), i.e., if / is epi, then there exists 
g such that f ο g = \ γ . 
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(2 val) For any 1 -»Ω, 1 - • Ω , if φγ ν φ2 = true, then φλ = true or 
φ2 = true, where ν denotes the mapping Ω χ Ω Α Ω representing union 
of two subobjects, easily defined equationally with the aid of the infinite 
intersection mapping PPY ^ PY 

Now it is a theorem (from Diaconescu) that the axiom of choice implies 
the law of the excluded middle, i.e., 1 + 1 ̂ > Ω, i.e., the subobject lattice 
of any object is Boolean. Thus the second axiom "2 val" (given an absolute 
interpretation of the external " o r " ) expresses just that there are only two 
subsets of a one-element set. 

It is also a theorem (easy) that the axiom of choice implies that the 
Boolean algebra of subsets of 1 generates the whole topos. However, 
although the use of "for a n y " and "if, then" in the statement of the above 
axioms is superfluous (i.e., as Gentzen sequents their structure is so simple 
that the whole system of rules of inference for the metatheory could easily 
be set up to eliminate these phrases entirely), to state, on the other hand, 
for a general (not necessarily Boolean) topos what "generat ing" means 
(for a class of objects, not necessarily a class of subobjects of 1) requires 
an essential use of V, => in the metatheory, so that classifying topoi in 
themselves will reveal less about such a theory. Namely, if c= â is a given 
class of objects in a topos S, then ' W generates â" just means that the 
law of extensionality holds in S for elements defined on objects A in 
«c/, i.e., 

(sJ gen) For any two subsets Sv S2 of any Y, if for every A in ..c/ 
and every A -> Y y e Sl implies y e S2, then Sx ç y S2. 

3. 

In this part all topoi will be over a fixed base if, which we may assume 
is constant sets to make some things easier to state. Remember, meanwhile, 
that the basic philosophy is to try to allow if to be as general as possible 
in the hope of applying results directly to the case where if is (the set-
valued sheaves on) a topological space, or is (the permutation-representa-
tions of) a group, or indeed where if itself is " a category of spaces" whose 
points are typical algebras in which "functions" on the "spaces" have their 
values. Recall that a continuous map JT - • & means a functor having a left 
exact left adjoint and that has a set of generators" means that there 
is an object in if that parametrizes a family of objects of ä\ which in 
turn satisfies (some internal version of) the extensionality condition stated 
for an unparametrized class sJ at the end of Section 2. 

Suppose YJJC is an object of £ \ what could it mean in terms of the topoi 
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involved that Yx is actually the sheaf of germs of continuous maps SC 
imagining for the moment that W " i s " a topological space? A reasonable 
definition would seem to be the following: for any object U of SC, there is 
a natural equivalence of categories 

T o p ^ / l / , ^ ) s i " ( l / , Yx). 

Here we recall that if SC " i s " also a space and if it happens that [ / ç 1, 
then SCjU " i s " just U considered as a space in its own right, while Yx) 
is the set of sections over U of the sheaf Yx. The fact that the left-hand 
side of the equation above is a category, usually not discrete, makes us 
realize that we should have taken Yx e C a t ( ^ ) as a category object in SC 
and not just a plain object in general; this is necessary even if ^ is a 
non-Hausdorff sober space, since relations of the kind y' e {y} give rise to 
(in that case unique) morphisms y' y oi points. Thus we in general expect 
y>eCat(:r). 

Now we put the question: Which ®J will have a sheaf of germs of 
continuous functions SC W for all SC or for all SC having a set of generators? 
It is clear that for most this will not be the case since SC(U, Yx) has to be 
a set (parametrizable by an object of y ) whereas for y = the Zariski topos, 
or most any classifying topos, there is a proper class of models for the 
associated theory, and hence Τ op y (SC, is not equivalent to a set, even 
for SC = y ("1 point space ST"). On the other hand, if OF is a topological 
space but SC arbitrary, it is easily seen that 

T o p ^ , 9) e y ( ^ ( i , Ω3,), SC(i n*)). 

and with slightly more effort one sees that Yx exists. Indeed since y -va lued 
points of % play no particular role, it is irrelevant whether has enough 
points, so we may assume simply that is generated by its subobjects of 1 
[i.e., ^ is the canonical sheaves on the complete Heyting algebra ^ ( 1 , Ω^) 
in y ] and get the same result. But there are still many more for which 
Yx "a lways" exist. 

Dropping the significant but entirely distinct question of sufficiency of 
points, we generalize Grothendieck's definition of étendue to obtain the 
definition we will use: 

Definition. W is an étendue over y iff there exists C -> 1 (epic) in %F 
such that W/C is generated (over y ) by its subobjects of 1. 

Briefly, the slogan is that & is "locally a topological space." In general, 
to define a property as holding locally one has to allow the covering C to 
be of the form C = X C, and ask for the property on each W/C^ however 
the property of being a topological space is "addi t ive" so we can use the 
simpler notion of covering. The first example of an étendue seems to have 
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been the space of moduli of algebraic curves, which is prevented from being 
globally a space due to the action of Galois groups within each point. Yes, 
something vaguely reminiscent of particle spin is going on in such spaces, 
and the most naked form is that for any group G, the category if

G
 of 

G-sets is an étendue with only one point! This is easily seen from the 
observations that if

G
/G = if and that G 1 where the last two G's denote 

the regular representation. 
A general explanation of why étendues arise in topology is that the 

"inclusion" functor 

t o p ( y ) - s i u T o p ^ 

does not in general preserve coequalizers; in particular, suppose a group G 
acts on a space X and consider the coequalizer diagram for the notion of 
orbit space—then if the action is good in some recognized sense, sh(X//G) 
will also be the (2-) coequalizer in T o p ^ , while if the action is bad the 
latter coequalizer tends to be an étendue that is not a space. (It seems 
to me that functional analysis internally in such a topos may shed light on 
hard cases in harmonic analysis and ergodic theory, but I have not had 
time to investigate this in detail.) 

Actually the group case is not quite typical, contrary to what is suggested 
by some exercises in SGA4; if Φ is any topos having a set stf of generators 
such that for A,Ä e sJ, °y(A, A') consists entirely of mcwomorphisms, then 

is an étendue, since C =ΣΑ e S/A works. For example, consider the topos 
y ° whose objects are just sets each equipped with an arbitrary endo-
morphism, for which <N, s> is a convenient generator; then 

y ° / < i V , s) ^ if
(0 

where ω denotes the ordered set of natural numbers ; the topos if
10
 even 

has enough points to be a topological space—these points are just the 
natural numbers plus one more point at infinity whose stalk functor is 

This shows that if ^ is an étendue, which in fact has exactly two points 
{1} = (the image under the projection of the point at oo) and {N} = (the 
image under the projection of each and every finite point η of the "covering" 
space); not all endomorphisms in the category of points are isomorphisms 
though. 

Now it is easy to make the conjecture that the only & that "a lways" 
have sheaves Yx of germs are the étendue. If so, study of both classes could 
perhaps be deepened. We have seen that many "domains of var iat ion" 
are too big to be sets (but it would be even worse to consider them as 
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"abstract classes," for example, since part of their essence is a very strong 
2-topological character expressed by the concept of a topos or something 
like it). On the other hand perhaps, at least the idea that every type of 
quantity is a set could be maintained ("arbitrary cardinals" as a " type of 
quant i ty" would actually be quite far from mathematical practice) then 
the old ideas of Descartes, and more explicitly Riemann, that "every" 
domain ®f of variation is isomorphic to a part of a type of quantity could 
be retained simply as the definition of a particular kind ("quanti ta t ive" 
as a special case of "quali tat ive") of domain ; but such a definition in the 
present context would seem to reduce to our condition that Yx exist for 
all SC. The idea that, for example, a cohomology class SC A £f

G
 is a sort of 

variable quantity of type G varying over SC has a definite intuitive appeal, 
in spite of the fact that α vanishes at every point of SC. 
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